Software Design & Architecture : Chapter 02

Key Principles

Software architecture is described as the organization of a system, where the system represents a set of components that accomplish the defined functions.

Architectural Style

The architectural style, also called as architectural pattern, is a set of principles which shapes an application. It defines an abstract framework for a family of system in terms of the pattern of structural organization.

The architectural style is responsible to −

· Provide a lexicon of components and connectors with rules on how they can be combined.

· Improve partitioning and allow the reuse of design by giving solutions to frequently occurring problems.

· Describe a particular way to configure a collection of components (a module with well-defined interfaces, reusable, and replaceable) and connectors (communication link between modules).

The software that is built for computer-based systems exhibit one of many architectural styles. Each style describes a system category that encompasses −

· A set of component types which perform a required function by the system.

· A set of connectors (subroutine call, remote procedure call, data stream, and socket) that enable communication, coordination, and cooperation among different components.

· Semantic constraints which define how components can be integrated to form the system.

· A topological layout of the components indicating their runtime interrelationships.

Common Architectural Design

The following table lists architectural styles that can be organized by their key focus area −

	Category
	Architectural Design
	Description

	Communication
	Message bus
	Prescribes use of a software system that can receive and send messages using one or more communication channels.

	
	Service–Oriented Architecture (SOA)
	Defines the applications that expose and consume functionality as a service using contracts and messages.

	Deployment
	Client/server
	Separate the system into two applications, where the client makes requests to the server.

	
	3-tier or N-tier
	Separates the functionality into separate segments with each segment being a tier located on a physically separate computer.

	Domain
	Domain Driven Design
	Focused on modeling a business domain and defining business objects based on entities within the business domain.

	Structure
	Component Based
	Breakdown the application design into reusable functional or logical components that expose well-defined communication interfaces.

	
	Layered
	Divide the concerns of the application into stacked groups (layers).

	
	Object oriented
	Based on the division of responsibilities of an application or system into objects, each containing the data and the behavior relevant to the object.


Types of Architecture

There are four types of architecture from the viewpoint of an enterprise and collectively, these architectures are referred to as enterprise architecture.

· Business architecture − Defines the strategy of business, governance, organization, and key business processes within an enterprise and focuses on the analysis and design of business processes.

· Application (software) architecture − Serves as the blueprint for individual application systems, their interactions, and their relationships to the business processes of the organization.

· Information architecture − Defines the logical and physical data assets and data management resources.

· Information technology (IT) architecture − Defines the hardware and software building blocks that make up the overall information system of the organization.

Architecture Design Process

The architecture design process focuses on the decomposition of a system into different components and their interactions to satisfy functional and nonfunctional requirements. The key inputs to software architecture design are −

· The requirements produced by the analysis tasks.

· The hardware architecture (the software architect in turn provides requirements to the system architect, who configures the hardware architecture).

The result or output of the architecture design process is an architectural description. The basic architecture design process is composed of the following steps −

Understand the Problem

· This is the most crucial step because it affects the quality of the design that follows.

· Without a clear understanding of the problem, it is not possible to create an effective solution.

· Many software projects and products are considered failures because they did not actually solve a valid business problem or have a recognizable return on investment (ROI).

Identify Design Elements and their Relationships

· In this phase, build a baseline for defining the boundaries and context of the system.

· Decomposition of the system into its main components based on functional requirements. The decomposition can be modeled using a design structure matrix (DSM), which shows the dependencies between design elements without specifying the granularity of the elements.

· In this step, the first validation of the architecture is done by describing a number of system instances and this step is referred as functionality based architectural design.

Evaluate the Architecture Design

· Each quality attribute is given an estimate so in order to gather qualitative measures or quantitative data, the design is evaluated.

· It involves evaluating the architecture for conformance to architectural quality attributes requirements.

· If all estimated quality attributes are as per the required standard, the architectural design process is finished.

· If not, the third phase of software architecture design is entered: architecture transformation. If the observed quality attribute does not meet its requirements, then a new design must be created.

Transform the Architecture Design

· This step is performed after an evaluation of the architectural design. The architectural design must be changed until it completely satisfies the quality attribute requirements.

· It is concerned with selecting design solutions to improve the quality attributes while preserving the domain functionality.

· A design is transformed by applying design operators, styles, or patterns. For transformation, take the existing design and apply design operator such as decomposition, replication, compression, abstraction, and resource sharing.

· The design is again evaluated and the same process is repeated multiple times if necessary and even performed recursively.

· The transformations (i.e. quality attribute optimizing solutions) generally improve one or some quality attributes while they affect others negatively

Key Architecture Principles

Following are the key principles to be considered while designing an architecture −

Build to Change Instead of Building to Last

Consider how the application may need to change over time to address new requirements and challenges, and build in the flexibility to support this.

Reduce Risk and Model to Analyze

Use design tools, visualizations, modeling systems such as UML to capture requirements and design decisions. The impacts can also be analyzed. Do not formalize the model to the extent that it suppresses the capability to iterate and adapt the design easily.

Use Models and Visualizations as a Communication and Collaboration Tool

Efficient communication of the design, the decisions, and ongoing changes to the design is critical to good architecture. Use models, views, and other visualizations of the architecture to communicate and share the design efficiently with all the stakeholders. This enables rapid communication of changes to the design.

Identify and understand key engineering decisions and areas where mistakes are most often made. Invest in getting key decisions right the first time to make the design more flexible and less likely to be broken by changes.

Use an Incremental and Iterative Approach

Start with baseline architecture and then evolve candidate architectures by iterative testing to improve the architecture. Iteratively add details to the design over multiple passes to get the big or right picture and then focus on the details.

Key Design Principles

Following are the design principles to be considered for minimizing cost, maintenance requirements, and maximizing extendibility, usability of architecture −

Separation of Concerns

Divide the components of system into specific features so that there is no overlapping among the components functionality. This will provide high cohesion and low coupling. This approach avoids the interdependency among components of system which helps in maintaining the system easy.

Single Responsibility Principle

Each and every module of a system should have one specific responsibility, which helps the user to clearly understand the system. It should also help with integration of the component with other components.

Principle of Least Knowledge

Any component or object should not have the knowledge about internal details of other components. This approach avoids interdependency and helps maintainability.

Minimize Large Design Upfront

Minimize large design upfront if the requirements of an application are unclear. If there is a possibility of modifying requirements, then avoid making a large design for whole system.

Do not Repeat the Functionality

Do not repeat functionality specifies that functionality of components should not to be repeated and hence a piece of code should be implemented in one component only. Duplication of functionality within an application can make it difficult to implement changes, decrease clarity, and introduce potential inconsistencies.

Prefer Composition over Inheritance while Reusing the Functionality

Inheritance creates dependency between children and parent classes and hence it blocks the free use of the child classes. In contrast, the composition provides a great level of freedom and reduces the inheritance hierarchies.

Identify Components and Group them in Logical Layers

Identity components and the area of concern that are needed in system to satisfy the requirements. Then group these related components in a logical layer, which will help the user to understand the structure of the system at a high level. Avoid mixing components of different type of concerns in same layer.

Define the Communication Protocol between Layers

Understand how components will communicate with each other which requires a complete knowledge of deployment scenarios and the production environment.

Define Data Format for a Layer

Various components will interact with each other through data format. Do not mix the data formats so that applications are easy to implement, extend, and maintain. Try to keep data format same for a layer, so that various components need not code/decode the data while communicating with each other. It reduces a processing overhead.

System Service Components should be Abstract

Code related to security, communications, or system services like logging, profiling, and configuration should be abstracted in the separate components. Do not mix this code with business logic, as it is easy to extend design and maintain it.

Design Exceptions and Exception Handling Mechanism

Defining exceptions in advance, helps the components to manage errors or unwanted situation in an elegant manner. The exception management will be same throughout the system.

Naming Conventions

Naming conventions should be defined in advance. They provide a consistent model that helps the users to understand the system easily. It is easier for team members to validate code written by others, and hence will increase the maintainability.

Architecture Models

Software architecture involves the high level structure of software system abstraction, by using decomposition and composition, with architectural style and quality attributes. A software architecture design must conform to the major functionality and performance requirements of the system, as well as satisfy the non-functional requirements such as reliability, scalability, portability, and availability.

A software architecture must describe its group of components, their connections, interactions among them and deployment configuration of all components.

A software architecture can be defined in many ways −

· UML (Unified Modeling Language) − UML is one of object-oriented solutions used in software modeling and design.

· Architecture View Model (4+1 view model) − Architecture view model represents the functional and non-functional requirements of software application.

· ADL (Architecture Description Language) − ADL defines the software architecture formally and semantically.

UML

UML stands for Unified Modeling Language. It is a pictorial language used to make software blueprints. UML was created by Object Management Group (OMG). The UML 1.0 specification draft was proposed to the OMG in January 1997. It serves as a standard for software requirement analysis and design documents which are the basis for developing a software.

UML can be described as a general purpose visual modeling language to visualize, specify, construct, and document a software system. Although UML is generally used to model software system, it is not limited within this boundary. It is also used to model non software systems such as process flows in a manufacturing unit.

The elements are like components which can be associated in different ways to make a complete UML picture, which is known as a diagram. So, it is very important to understand the different diagrams to implement the knowledge in real-life systems. We have two broad categories of diagrams and they are further divided into sub-categories i.e. Structural Diagrams and Behavioral Diagrams.

Structural Diagrams

Structural diagrams represent the static aspects of a system. These static aspects represent those parts of a diagram which forms the main structure and is therefore stable.

These static parts are represented by classes, interfaces, objects, components and nodes. Structural diagrams can be sub-divided as follows −

· Class diagram

· Object diagram

· Component diagram

· Deployment diagram

· Package diagram

· Composite structure

The following table provides a brief description of these diagrams −

	Sr.No.
	Diagram & Description

	1
	Class
Represents the object orientation of a system. Shows how classes are statically related.

	2
	Object
Represents a set of objects and their relationships at runtime and also represent the static view of the system.

	3
	Component
Describes all the components, their interrelationship, interactions and interface of the system.

	4
	Composite structure
Describes inner structure of component including all classes, interfaces of the component, etc.

	5
	Package
Describes the package structure and organization. Covers classes in the package and packages within another package.

	6
	Deployment
Deployment diagrams are a set of nodes and their relationships. These nodes are physical entities where the components are deployed.


Behavioral Diagrams

Behavioral diagrams basically capture the dynamic aspect of a system. Dynamic aspects are basically the changing/moving parts of a system. UML has the following types of behavioral diagrams −

· Use case diagram

· Sequence diagram

· Communication diagram

· State chart diagram

· Activity diagram

· Interaction overview

· Time sequence diagram

The following table provides a brief description of these diagram −

	Sr.No.
	Diagram & Description

	1
	Use case
Describes the relationships among the functionalities and their internal/external controllers. These controllers are known as actors.

	2
	Activity
Describes the flow of control in a system. It consists of activities and links. The flow can be sequential, concurrent, or branched.

	3
	State Machine/state chart
Represents the event driven state change of a system. It basically describes the state change of a class, interface, etc. Used to visualize the reaction of a system by internal/external factors.

	4
	Sequence
Visualizes the sequence of calls in a system to perform a specific functionality.

	5
	Interaction Overview
Combines activity and sequence diagrams to provide a control flow overview of system and business process.

	6
	Communication
Same as sequence diagram, except that it focuses on the object’s role. Each communication is associated with a sequence order, number plus the past messages.

	7
	Time Sequenced
Describes the changes by messages in state, condition and events.


Architecture View Model

A model is a complete, basic, and simplified description of software architecture which is composed of multiple views from a particular perspective or viewpoint.

A view is a representation of an entire system from the perspective of a related set of concerns. It is used to describe the system from the viewpoint of different stakeholders such as end-users, developers, project managers, and testers.

4+1 View Model

The 4+1 View Model was designed by Philippe Kruchten to describe the architecture of a software–intensive system based on the use of multiple and concurrent views. It is a multiple view model that addresses different features and concerns of the system. It standardizes the software design documents and makes the design easy to understand by all stakeholders.

It is an architecture verification method for studying and documenting software architecture design and covers all the aspects of software architecture for all stakeholders. It provides four essential views −

· The logical view or conceptual view − It describes the object model of the design.

· The process view − It describes the activities of the system, captures the concurrency and synchronization aspects of the design.

· The physical view − It describes the mapping of software onto hardware and reflects its distributed aspect.

· The development view − It describes the static organization or structure of the software in its development of environment.

This view model can be extended by adding one more view called scenario view or use case view for end-users or customers of software systems. It is coherent with other four views and are utilized to illustrate the architecture serving as “plus one” view, (4+1) view model. The following figure describes the software architecture using five concurrent views (4+1) model.

[image: image1.jpg]
Why is it called 4+1 instead of 5?

The use case view has a special significance as it details the high level requirement of a system while other views details — how those requirements are realized. When all other four views are completed, it’s effectively redundant. However, all other views would not be possible without it. The following image and table shows the 4+1 view in detail −

	
	Logical
	Process
	Development
	Physical
	Scenario

	Description
	Shows the component (Object) of system as well as their interaction
	Shows the processes / Workflow rules of system and how those processes communicate, focuses on dynamic view of system
	Gives building block views of system and describe static organization of the system modules
	Shows the installation, configuration and deployment of software application
	Shows the design is complete by performing validation and illustration

	Viewer / Stake holder
	End-User, Analysts and Designer
	Integrators & developers
	Programmer and software project managers
	System engineer, operators, system administrators and system installers
	All the views of their views and evaluators

	Consider
	Functional requirements
	Non Functional Requirements
	Software Module organization (Software management reuse, constraint of tools)
	Nonfunctional requirement regarding to underlying hardware
	System Consistency and validity

	UML – Diagram
	Class, State, Object, sequence, Communication Diagram
	Activity Diagram
	Component, Package diagram
	Deployment diagram
	Use case diagram


Architecture Description Languages (ADLs)

An ADL is a language that provides syntax and semantics for defining a software architecture. It is a notation specification which provides features for modeling a software system’s conceptual architecture, distinguished from the system’s implementation.

ADLs must support the architecture components, their connections, interfaces, and configurations which are the building block of architecture description. It is a form of expression for use in architecture descriptions and provides the ability to decompose components, combine the components, and define the interfaces of components.

An architecture description language is a formal specification language, which describes the software features such as processes, threads, data, and sub-programs as well as hardware component such as processors, devices, buses, and memory.

It is hard to classify or differentiate an ADL and a programming language or a modeling language. However, there are following requirements for a language to be classified as an ADL −

· It should be appropriate for communicating the architecture to all concerned parties.

· It should be suitable for tasks of architecture creation, refinement, and validation.

· It should provide a basis for further implementation, so it must be able to add information to the ADL specification to enable the final system specification to be derived from the ADL.

· It should have the ability to represent most of the common architectural styles.

· It should support analytical capabilities or provide quick generating prototype implementations.

Object-Oriented Paradigm

The object-oriented (OO) paradigm took its shape from the initial concept of a new programming approach, while the interest in design and analysis methods came much later. OO analysis and design paradigm is the logical result of the wide adoption of OO programming languages.

· The first object–oriented language was Simula (Simulation of real systems) that was developed in 1960 by researchers at the Norwegian Computing Center.

· In 1970, Alan Kay and his research group at Xerox PARC created a personal computer named Dynabook and the first pure object-oriented programming language (OOPL) - Smalltalk, for programming the Dynabook.

· In the 1980s, Grady Booch published a paper titled Object Oriented Design that mainly presented a design for the programming language, Ada. In the ensuing editions, he extended his ideas to a complete object–oriented design method.

· In the 1990s, Coad incorporated behavioral ideas to object-oriented methods.

The other significant innovations were Object Modeling Techniques (OMT) by James Rum Baugh and Object-Oriented Software Engineering (OOSE) by Ivar Jacobson.

Introduction to OO Paradigm

OO paradigm is a significant methodology for the development of any software. Most of the architecture styles or patterns such as pipe and filter, data repository, and component-based can be implemented by using this paradigm.

Basic concepts and terminologies of object–oriented systems −

Object

An object is a real-world element in an object–oriented environment that may have a physical or a conceptual existence. Each object has −

· Identity that distinguishes it from other objects in the system.

· State that determines characteristic properties of an object as well as values of properties that the object holds.

· Behavior that represents externally visible activities performed by an object in terms of changes in its state.

Objects can be modeled according to the needs of the application. An object may have a physical existence, like a customer, a car, etc.; or an intangible conceptual existence, like a project, a process, etc.

Class

A class represents a collection of objects having same characteristic properties that exhibit common behavior. It gives the blueprint or the description of the objects that can be created from it. Creation of an object as a member of a class is called instantiation. Thus, an object is an instance of a class.

The constituents of a class are −

· A set of attributes for the objects that are to be instantiated from the class. Generally, different objects of a class have some difference in the values of the attributes. Attributes are often referred as class data.

· A set of operations that portray the behavior of the objects of the class. Operations are also referred as functions or methods.

Example
Let us consider a simple class, Circle, that represents the geometrical figure circle in a two–dimensional space. The attributes of this class can be identified as follows −

· x–coord, to denote x–coordinate of the center

· y–coord, to denote y–coordinate of the center

· a, to denote the radius of the circle

Some of its operations can be defined as follows −

· findArea(), a method to calculate area

· findCircumference(), a method to calculate circumference

· scale(), a method to increase or decrease the radius

Encapsulation

Encapsulation is the process of binding both attributes and methods together within a class. Through encapsulation, the internal details of a class can be hidden from outside. It permits the elements of the class to be accessed from outside only through the interface provided by the class.

Polymorphism

Polymorphism is originally a Greek word that means the ability to take multiple forms. In object-oriented paradigm, polymorphism implies using operations in different ways, depending upon the instances they are operating upon. Polymorphism allows objects with different internal structures to have a common external interface. Polymorphism is particularly effective while implementing inheritance.

Example
Let us consider two classes, Circle and Square, each with a method findArea(). Though the name and purpose of the methods in the classes are same, the internal implementation, i.e., the procedure of calculating an area is different for each class. When an object of class Circle invokes its findArea() method, the operation finds the area of the circle without any conflict with the findArea() method of the Square class.

Relationships
In order to describe a system, both dynamic (behavioral) and static (logical) specification of a system must be provided. The dynamic specification describes the relationships among objects e.g. message passing. And static specification describe the relationships among classes, e.g. aggregation, association, and inheritance.

Message Passing

Any application requires a number of objects interacting in a harmonious manner. Objects in a system may communicate with each other by using message passing. Suppose a system has two objects − obj1 and obj2. The object obj1 sends a message to object obj2, if obj1 wants obj2 to execute one of its methods.

Composition or Aggregation

Aggregation or composition is a relationship among classes by which a class can be made up of any combination of objects of other classes. It allows objects to be placed directly within the body of other classes. Aggregation is referred as a “part–of” or “has–a” relationship, with the ability to navigate from the whole to its parts. An aggregate object is an object that is composed of one or more other objects.

Association

Association is a group of links having common structure and common behavior. Association depicts the relationship between objects of one or more classes. A link can be defined as an instance of an association. The Degree of an association denotes the number of classes involved in a connection. The degree may be unary, binary, or ternary.

· A unary relationship connects objects of the same class.

· A binary relationship connects objects of two classes.

· A ternary relationship connects objects of three or more classes.

Inheritance

It is a mechanism that permits new classes to be created out of existing classes by extending and refining its capabilities. The existing classes are called the base classes/parent classes/super-classes, and the new classes are called the derived classes/child classes/subclasses.

The subclass can inherit or derive the attributes and methods of the super-class (es) provided that the super-class allows so. Besides, the subclass may add its own attributes and methods and may modify any of the super-class methods. Inheritance defines a “is – a” relationship.

Example
From a class Mammal, a number of classes can be derived such as Human, Cat, Dog, Cow, etc. Humans, cats, dogs, and cows all have the distinct characteristics of mammals. In addition, each has its own particular characteristics. It can be said that a cow “is – a” mammal.

OO Analysis

In object-oriented analysis phase of software development, the system requirements are determined, the classes are identified, and the relationships among classes are acknowledged. The aim of OO analysis is to understand the application domain and specific requirements of the system. The result of this phase is requirement specification and initial analysis of logical structure and feasibility of a system.

The three analysis techniques that are used in conjunction with each other for object-oriented analysis are object modeling, dynamic modeling, and functional modeling.

Object Modeling

Object modeling develops the static structure of the software system in terms of objects. It identifies the objects, the classes into which the objects can be grouped into and the relationships between the objects. It also identifies the main attributes and operations that characterize each class.

The process of object modeling can be visualized in the following steps −

· Identify objects and group into classes

· Identify the relationships among classes

· Create a user object model diagram

· Define a user object attributes

· Define the operations that should be performed on the classes

Dynamic Modeling

After the static behavior of the system is analyzed, its behavior with respect to time and external changes needs to be examined. This is the purpose of dynamic modeling.

Dynamic Modeling can be defined as “a way of describing how an individual object responds to events, either internal events triggered by other objects, or external events triggered by the outside world.”

The process of dynamic modeling can be visualized in the following steps −

· Identify states of each object

· Identify events and analyze the applicability of actions

· Construct a dynamic model diagram, comprising of state transition diagrams

· Express each state in terms of object attributes

· Validate the state–transition diagrams drawn

Functional Modeling

Functional Modeling is the final component of object-oriented analysis. The functional model shows the processes that are performed within an object and how the data changes, as it moves between methods. It specifies the meaning of the operations of an object modeling and the actions of a dynamic modeling. The functional model corresponds to the data flow diagram of traditional structured analysis.

The process of functional modeling can be visualized in the following steps −

· Identify all the inputs and outputs

· Construct data flow diagrams showing functional dependencies

· State the purpose of each function

· Identify the constraints

· Specify optimization criteria

Object-Oriented Design

After the analysis phase, the conceptual model is developed further into an object-oriented model using object-oriented design (OOD). In OOD, the technology-independent concepts in the analysis model are mapped onto implementing classes, constraints are identified, and interfaces are designed, resulting in a model for the solution domain. The main aim of OO design is to develop the structural architecture of a system.

The stages for object–oriented design can be identified as −

· Defining the context of the system

· Designing the system architecture

· Identification of the objects in the system

· Construction of design models

· Specification of object interfaces

OO Design can be divided into two stages − Conceptual design and Detailed design.

Conceptual design
In this stage, all the classes are identified that are needed for building the system. Further, specific responsibilities are assigned to each class. Class diagram is used to clarify the relationships among classes, and interaction diagram are used to show the flow of events. It is also known as high-level design.

Detailed design
In this stage, attributes and operations are assigned to each class based on their interaction diagram. State machine diagram are developed to describe the further details of design. It is also known as low-level design.

Design Principles

Following are the major design principles −

Principle of Decoupling
It is difficult to maintain a system with a set of highly interdependent classes, as modification in one class may result in cascading updates of other classes. In an OO design, tight coupling can be eliminated by introducing new classes or inheritance.

Ensuring Cohesion
A cohesive class performs a set of closely related functions. A lack of cohesion means — a class performs unrelated functions, although it does not affect the operation of the whole system. It makes the entire structure of software hard to manage, expand, maintain, and change.

Open-closed Principle
According to this principle, a system should be able to extend to meet the new requirements. The existing implementation and the code of the system should not be modified as a result of a system expansion. In addition, the following guidelines have to be followed in open-closed principle −

· For each concrete class, separate interface and implementations have to be maintained.

· In a multithreaded environment, keep the attributes private.

· Minimize the use of global variables and class variables.

