Software Design and Architecture - Chapter 03

Data Flow Architecture
In data flow architecture, the whole software system is seen as a series of transformations on consecutive pieces or set of input data, where data and operations are independent of each other. In this approach, the data enters into the system and then flows through the modules one at a time until they are assigned to some final destination (output or a data store).

The connections between the components or modules may be implemented as I/O stream, I/O buffers, piped, or other types of connections. The data can be flown in the graph topology with cycles, in a linear structure without cycles, or in a tree type structure.

The main objective of this approach is to achieve the qualities of reuse and modifiability. It is suitable for applications that involve a well-defined series of independent data transformations or computations on orderly defined input and output such as compilers and business data processing applications. There are three types of execution sequences between modules−

· Batch sequential

· Pipe and filter or non-sequential pipeline mode

· Process control

Batch Sequential

Batch sequential is a classical data processing model, in which a data transformation subsystem can initiate its process only after its previous subsystem is completely through −

· The flow of data carries a batch of data as a whole from one subsystem to another.

· The communications between the modules are conducted through temporary intermediate files which can be removed by successive subsystems.

· It is applicable for those applications where data is batched, and each subsystem reads related input files and writes output files.

· Typical application of this architecture includes business data processing such as banking and utility billing.


Advantages

· Provides simpler divisions on subsystems.

· Each subsystem can be an independent program working on input data and producing output data.

Disadvantages

· Provides high latency and low throughput.

· Does not provide concurrency and interactive interface.

· External control is required for implementation.

Pipe and Filter Architecture

This approach lays emphasis on the incremental transformation of data by successive component. In this approach, the flow of data is driven by data and the whole system is decomposed into components of data source, filters, pipes, and data sinks.

The connections between modules are data stream which is first-in/first-out buffer that can be stream of bytes, characters, or any other type of such kind. The main feature of this architecture is its concurrent and incremented execution.

Filter

A filter is an independent data stream transformer or stream transducers. It transforms the data of the input data stream, processes it, and writes the transformed data stream over a pipe for the next filter to process. It works in an incremental mode, in which it starts working as soon as data arrives through connected pipe. There are two types of filters − active filter and passive filter.

Active filter
Active filter lets connected pipes to pull data in and push out the transformed data. It operates with passive pipe, which provides read/write mechanisms for pulling and pushing. This mode is used in UNIX pipe and filter mechanism.

Passive filter
Passive filter lets connected pipes to push data in and pull data out. It operates with active pipe, which pulls data from a filter and pushes data into the next filter. It must provide read/write mechanism.

[image: image1.png]
Advantages

· Provides concurrency and high throughput for excessive data processing.

· Provides reusability and simplifies system maintenance.

· Provides modifiability and low coupling between filters.

· Provides simplicity by offering clear divisions between any two filters connected by pipe.

· Provides flexibility by supporting both sequential and parallel execution.

Disadvantages

· Not suitable for dynamic interactions.

· A low common denominator is needed for transmission of data in ASCII formats.

· Overhead of data transformation between filters.

· Does not provide a way for filters to cooperatively interact to solve a problem.

· Difficult to configure this architecture dynamically.

Pipe

Pipes are stateless and they carry binary or character stream which exist between two filters. It can move a data stream from one filter to another. Pipes use a little contextual information and retain no state information between instantiations.

Process Control Architecture

It is a type of data flow architecture where data is neither batched sequential nor pipelined stream. The flow of data comes from a set of variables, which controls the execution of process. It decomposes the entire system into subsystems or modules and connects them.

Types of Subsystems

A process control architecture would have a processing unit for changing the process control variables and a controller unit for calculating the amount of changes.

A controller unit must have the following elements −

· Controlled Variable − Controlled Variable provides values for the underlying system and should be measured by sensors. For example, speed in cruise control system.

· Input Variable − Measures an input to the process. For example, temperature of return air in temperature control system

· Manipulated Variable − Manipulated Variable value is adjusted or changed by the controller.

· Process Definition − It includes mechanisms for manipulating some process variables.

· Sensor − Obtains values of process variables pertinent to control and can be used as a feedback reference to recalculate manipulated variables.

· Set Point − It is the desired value for a controlled variable.

· Control Algorithm − It is used for deciding how to manipulate process variables.

Application Areas

Process control architecture is suitable in the following domains −

· Embedded system software design, where the system is manipulated by process control variable data.

· Applications, which aim is to maintain specified properties of the outputs of the process at given reference values.

· Applicable for car-cruise control and building temperature control systems.

· Real-time system software to control automobile anti-lock brakes, nuclear power plants, etc.

Data-Centered Architecture

In data-centered architecture, the data is centralized and accessed frequently by other components, which modify data. The main purpose of this style is to achieve integrality of data. Data-centered architecture consists of different components that communicate through shared data repositories. The components access a shared data structure and are relatively independent, in that, they interact only through the data store.

The most well-known examples of the data-centered architecture is a database architecture, in which the common database schema is created with data definition protocol – for example, a set of related tables with fields and data types in an RDBMS.

Another example of data-centered architectures is the web architecture which has a common data schema (i.e. meta-structure of the Web) and follows hypermedia data model and processes communicate through the use of shared web-based data services.

[image: image2.png]
Types of Components

There are two types of components −

· A central data structure or data store or data repository, which is responsible for providing permanent data storage. It represents the current state.

· A data accessor or a collection of independent components that operate on the central data store, perform computations, and might put back the results.

Interactions or communication between the data accessors is only through the data store. The data is the only means of communication among clients. The flow of control differentiates the architecture into two categories −

· Repository Architecture Style

· Blackboard Architecture Style

Repository Architecture Style

In Repository Architecture Style, the data store is passive and the clients (software components or agents) of the data store are active, which control the logic flow. The participating components check the data-store for changes.

· The client sends a request to the system to perform actions (e.g. insert data).

· The computational processes are independent and triggered by incoming requests.

· If the types of transactions in an input stream of transactions trigger selection of processes to execute, then it is traditional database or repository architecture, or passive repository.

· This approach is widely used in DBMS, library information system, the interface repository in CORBA, compilers and CASE (computer aided software engineering) environments.

[image: image3.png]
Advantages

· Provides data integrity, backup and restore features.

· Provides scalability and reusability of agents as they do not have direct communication with each other.

· Reduces overhead of transient data between software components.

Disadvantages

· It is more vulnerable to failure and data replication or duplication is possible.

· High dependency between data structure of data store and its agents.

· Changes in data structure highly affect the clients.

· Evolution of data is difficult and expensive.

· Cost of moving data on network for distributed data.

Blackboard Architecture Style

In Blackboard Architecture Style, the data store is active and its clients are passive. Therefore the logical flow is determined by the current data status in data store. It has a blackboard component, acting as a central data repository, and an internal representation is built and acted upon by different computational elements.

· A number of components that act independently on the common data structure are stored in the blackboard.

· In this style, the components interact only through the blackboard. The data-store alerts the clients whenever there is a data-store change.

· The current state of the solution is stored in the blackboard and processing is triggered by the state of the blackboard.

· The system sends notifications known as trigger and data to the clients when changes occur in the data.

· This approach is found in certain AI applications and complex applications, such as speech recognition, image recognition, security system, and business resource management systems etc.

· If the current state of the central data structure is the main trigger of selecting processes to execute, the repository can be a blackboard and this shared data source is an active agent.

· A major difference with traditional database systems is that the invocation of computational elements in a blackboard architecture is triggered by the current state of the blackboard, and not by external inputs.

Parts of Blackboard Model

The blackboard model is usually presented with three major parts −

Knowledge Sources (KS)
Knowledge Sources, also known as Listeners or Subscribers are distinct and independent units. They solve parts of a problem and aggregate partial results. Interaction among knowledge sources takes place uniquely through the blackboard.

Blackboard Data Structure
The problem-solving state data is organized into an application-dependent hierarchy. Knowledge sources make changes to the blackboard that lead incrementally to a solution to the problem.

Control
Control manages tasks and checks the work state.

[image: image4.png]
Advantages

· Provides scalability which provides easy to add or update knowledge source.

· Provides concurrency that allows all knowledge sources to work in parallel as they are independent of each other.

· Supports experimentation for hypotheses.

· Supports reusability of knowledge source agents.

Disadvantages

· The structure change of blackboard may have a significant impact on all of its agents as close dependency exists between blackboard and knowledge source.

· It can be difficult to decide when to terminate the reasoning as only approximate solution is expected.

· Problems in synchronization of multiple agents.

· Major challenges in designing and testing of system.

Hierarchical Architecture

Hierarchical architecture views the whole system as a hierarchy structure, in which the software system is decomposed into logical modules or subsystems at different levels in the hierarchy. This approach is typically used in designing system software such as network protocols and operating systems.

In system software hierarchy design, a low-level subsystem gives services to its adjacent upper level subsystems, which invoke the methods in the lower level. The lower layer provides more specific functionality such as I/O services, transaction, scheduling, security services, etc. The middle layer provides more domain dependent functions such as business logic and core processing services. And, the upper layer provides more abstract functionality in the form of user interface such as GUIs, shell programming facilities, etc.

It is also used in organization of the class libraries such as .NET class library in namespace hierarchy. All the design types can implement this hierarchical architecture and often combine with other architecture styles.

Hierarchical architectural styles is divided as −

· Main-subroutine

· Master-slave

· Virtual machine

Main-subroutine

The aim of this style is to reuse the modules and freely develop individual modules or subroutine. In this style, a software system is divided into subroutines by using top-down refinement according to desired functionality of the system.

These refinements lead vertically until the decomposed modules is simple enough to have its exclusive independent responsibility. Functionality may be reused and shared by multiple callers in the upper layers.

There are two ways by which data is passed as parameters to subroutines, namely −

· Pass by Value − Subroutines only use the past data, but can’t modify it.

· Pass by Reference − Subroutines use as well as change the value of the data referenced by the parameter.

[image: image5.png]
Advantages

· Easy to decompose the system based on hierarchy refinement.

· Can be used in a subsystem of object oriented design.

Disadvantages

· Vulnerable as it contains globally shared data.

· Tight coupling may cause more ripple effects of changes.

Master-Slave

This approach applies the 'divide and conquer' principle and supports fault computation and computational accuracy. It is a modification of the main-subroutine architecture that provides reliability of system and fault tolerance.

In this architecture, slaves provide duplicate services to the master, and the master chooses a particular result among slaves by a certain selection strategy. The slaves may perform the same functional task by different algorithms and methods or totally different functionality. It includes parallel computing in which all the slaves can be executed in parallel.

[image: image6.png]
The implementation of the Master-Slave pattern follows five steps −

· Specify how the computation of the task can be divided into a set of equal sub-tasks and identify the sub-services that are needed to process a sub-task.

· Specify how the final result of the whole service can be computed with the help of the results obtained from processing individual sub-tasks.

· Define an interface for the sub-service identified in step 1. It will be implemented by the slave and used by the master to delegate the processing of individual sub-tasks.

· Implement the slave components according to the specifications developed in the previous step.

· Implement the master according to the specifications developed in step 1 to 3.

Applications

· Suitable for applications where reliability of software is critical issue.

· Widely applied in the areas of parallel and distributed computing.

Advantages

· Faster computation and easy scalability.

· Provides robustness as slaves can be duplicated.

· Slave can be implemented differently to minimize semantic errors.

Disadvantages

· Communication overhead.

· Not all problems can be divided.

· Hard to implement and portability issue.

Virtual Machine Architecture

Virtual Machine architecture pretends some functionality, which is not native to the hardware and/or software on which it is implemented. A virtual machine is built upon an existing system and provides a virtual abstraction, a set of attributes, and operations.

In virtual machine architecture, the master uses the ‘same’ subservice’ from the slave and performs functions such as split work, call slaves, and combine results. It allows developers to simulate and test platforms, which have not yet been built, and simulate "disaster'' modes that would be too complex, costly, or dangerous to test with the real system.

In most cases, a virtual machine splits a programming language or application environment from an execution platform. The main objective is to provide portability. Interpretation of a particular module via a Virtual Machine may be perceived as −

· The interpretation engine chooses an instruction from the module being interpreted.

· Based on the instruction, the engine updates the virtual machine’s internal state and the above process is repeated.

The following figure shows the architecture of a standard VM infrastructure on a single physical machine.

[image: image7.png]
The hypervisor, also called the virtual machine monitor, runs on the host OS and allocates matched resources to each guest OS. When the guest makes a system-call, the hypervisor intercepts and translates it into the corresponding system-call supported by the host OS. The hypervisor controls each virtual machine access to the CPU, memory, persistent storage, I/O devices, and the network.

Applications

Virtual machine architecture is suitable in the following domains −

· Suitable for solving a problem by simulation or translation if there is no direct solution.

· Sample applications include interpreters of microprogramming, XML processing, script command language execution, rule-based system execution, Smalltalk and Java interpreter typed programming language.

· Common examples of virtual machines are interpreters, rule-based systems, syntactic shells, and command language processors.

Advantages

· Portability and machine platform independency.

· Simplicity of software development.

· Provides flexibility through the ability to interrupt and query the program.

· Simulation for disaster working model.

· Introduce modifications at runtime.

Disadvantages

· Slow execution of the interpreter due to the interpreter nature.

· There is a performance cost because of the additional computation involved in execution.

Layered Style

In this approach, the system is decomposed into a number of higher and lower layers in a hierarchy, and each layer has its own sole responsibility in the system.

· Each layer consists of a group of related classes that are encapsulated in a package, in a deployed component, or as a group of subroutines in the format of method library or header file.

· Each layer provides service to the layer above it and serves as a client to the layer below i.e. request to layer i +1 invokes the services provided by the layer i via the interface of layer i. The response may go back to the layer i +1 if the task is completed; otherwise layer i continually invokes services from layer i -1 below.

Applications

Layered style is suitable in the following areas −

· Applications that involve distinct classes of services that can be organized hierarchically.

· Any application that can be decomposed into application-specific and platform-specific portions.

· Applications that have clear divisions between core services, critical services, and user interface services, etc.

Advantages

· Design based on incremental levels of abstraction.

· Provides enhancement independence as changes to the function of one layer affects at most two other layers.

· Separation of the standard interface and its implementation.

· Implemented by using component-based technology which makes the system much easier to allow for plug-and-play of new components.

· Each layer can be an abstract machine deployed independently which support portability.

· Easy to decompose the system based on the definition of the tasks in a top-down refinement manner

· Different implementations (with identical interfaces) of the same layer can be used interchangeably

Disadvantages

· Many applications or systems are not easily structured in a layered fashion.

· Lower runtime performance since a client’s request or a response to client must go through potentially several layers.

· There are also performance concerns on overhead on the data marshaling and buffering by each layer.

· Opening of interlayer communication may cause deadlocks and “bridging” may cause tight coupling.

· Exceptions and error handling is an issue in the layered architecture, since faults in one layer must spread upwards to all calling layers

