OOSAD Chapter 02:
Object Oriented Analysis:

In the system analysis or object-oriented analysis phase of software development, the system requirements are determined, the classes are identified and the relationships among classes are identified.

The three analysis techniques that are used in conjunction with each other for object-oriented analysis are object modelling, dynamic modelling, and functional modelling.

Object Modelling

Object modelling develops the static structure of the software system in terms of objects. It identifies the objects, the classes into which the objects can be grouped into and the relationships between the objects. It also identifies the main attributes and operations that characterize each class.

The process of object modelling can be visualized in the following steps −

· Identify objects and group into classes

· Identify the relationships among classes

· Create user object model diagram

· Define user object attributes

· Define the operations that should be performed on the classes

· Review glossary

Dynamic Modelling

After the static behavior of the system is analyzed, its behavior with respect to time and external changes needs to be examined. This is the purpose of dynamic modelling.

Dynamic Modelling can be defined as “a way of describing how an individual object responds to events, either internal events triggered by other objects, or external events triggered by the outside world”.

The process of dynamic modelling can be visualized in the following steps −

· Identify states of each object

· Identify events and analyze the applicability of actions

· Construct dynamic model diagram, comprising of state transition diagrams

· Express each state in terms of object attributes

· Validate the state–transition diagrams drawn

Functional Modelling

Functional Modelling is the final component of object-oriented analysis. The functional model shows the processes that are performed within an object and how the data changes as it moves between methods. It specifies the meaning of the operations of object modelling and the actions of dynamic modelling. The functional model corresponds to the data flow diagram of traditional structured analysis.

The process of functional modelling can be visualized in the following steps −

· Identify all the inputs and outputs

· Construct data flow diagrams showing functional dependencies

· State the purpose of each function

· Identify constraints

· Specify optimization criteria

Structured Analysis vs. Object Oriented Analysis

The Structured Analysis/Structured Design (SASD) approach is the traditional approach of software development based upon the waterfall model. The phases of development of a system using SASD are −

· Feasibility Study

· Requirement Analysis and Specification

· System Design

· Implementation

· Post-implementation Review

Now, we will look at the relative advantages and disadvantages of structured analysis approach and object-oriented analysis approach.

Advantages/Disadvantages of Object Oriented Analysis

	Advantages
	Disadvantages

	Focuses on data rather than the procedures as in Structured Analysis.
	Functionality is restricted within objects. This may pose a problem for systems which are intrinsically procedural or computational in nature.

	The principles of encapsulation and data hiding help the developer to develop systems that cannot be tampered by other parts of the system.
	It cannot identify which objects would generate an optimal system design.

	The principles of encapsulation and data hiding help the developer to develop systems that cannot be tampered by other parts of the system.
	The object-oriented models do not easily show the communications between the objects in the system.

	It allows effective management of software complexity by the virtue of modularity.
	All the interfaces between the objects cannot be represented in a single diagram.

	It can be upgraded from small to large systems at a greater ease than in systems following structured analysis.
	


Advantages/Disadvantages of Structured Analysis

	Advantages
	Disadvantages

	As it follows a top-down approach in contrast to bottom-up approach of object-oriented analysis, it can be more easily comprehended than OOA.
	In traditional structured analysis models, one phase should be completed before the next phase. This poses a problem in design, particularly if errors crop up or requirements change.

	It is based upon functionality. The overall purpose is identified and then functional decomposition is done for developing the software. The emphasis not only gives a better understanding of the system but also generates more complete systems.
	The initial cost of constructing the system is high, since the whole system needs to be designed at once leaving very little option to add functionality later.

	The specifications in it are written in simple English language, and hence can be more easily analyzed by non-technical personnel.
	It does not support reusability of code. So, the time and cost of development is inherently high.


Dynamic Modeling:

The dynamic model represents the time–dependent aspects of a system. It is concerned with the temporal changes in the states of the objects in a system. The main concepts are −

· State, which is the situation at a particular condition during the lifetime of an object.

· Transition, a change in the state

· Event, an occurrence that triggers transitions

· Action, an uninterrupted and atomic computation that occurs due to some event, and

· Concurrency of transitions.

A state machine models the behavior of an object as it passes through a number of states in its lifetime due to some events as well as the actions occurring due to the events. A state machine is graphically represented through a state transition diagram.

States and State Transitions

State

The state is an abstraction given by the values of the attributes that the object has at a particular time period. It is a situation occurring for a finite time period in the lifetime of an object, in which it fulfils certain conditions, performs certain activities, or waits for certain events to occur. In state transition diagrams, a state is represented by rounded rectangles.

Parts of a state

· Name − A string differentiates one state from another. A state may not have any name.

· Entry/Exit Actions − It denotes the activities performed on entering and on exiting the state.

· Internal Transitions − The changes within a state that do not cause a change in the state.

· Sub–states − States within states.

Initial and Final States

The default starting state of an object is called its initial state. The final state indicates the completion of execution of the state machine. The initial and the final states are pseudo-states, and may not have the parts of a regular state except name. In state transition diagrams, the initial state is represented by a filled black circle. The final state is represented by a filled black circle encircled within another unfilled black circle.

Transition

A transition denotes a change in the state of an object. If an object is in a certain state when an event occurs, the object may perform certain activities subject to specified conditions and change the state. In this case, a state−transition is said to have occurred. The transition gives the relationship between the first state and the new state. A transition is graphically represented by a solid directed arc from the source state to the destination state.

The five parts of a transition are −

· Source State − The state affected by the transition.

· Event Trigger − The occurrence due to which an object in the source state undergoes a transition if the guard condition is satisfied.

· Guard Condition − A Boolean expression which if True, causes a transition on receiving the event trigger.

· Action − An un-interruptible and atomic computation that occurs on the source object due to some event.

· Target State − The destination state after completion of transition.

Example
Suppose a person is taking a taxi from place X to place Y. The states of the person may be: Waiting (waiting for taxi), Riding (he has got a taxi and is travelling in it), and Reached (he has reached the destination). The following figure depicts the state transition.

[image: image1.jpg]Initial State

Transitions Final State

State




Events

Events are some occurrences that can trigger state transition of an object or a group of objects. Events have a location in time and space but do not have a time period associated with it. Events are generally associated with some actions.

Examples of events are mouse click, key press, an interrupt, stack overflow, etc.

Events that trigger transitions are written alongside the arc of transition in state diagrams.

Example
Considering the example shown in the above figure, the transition from Waiting state to Riding state takes place when the person gets a taxi. Likewise, the final state is reached, when he reaches the destination. These two occurrences can be termed as events Get_Taxi and Reach_Destination. The following figure shows the events in a state machine.

[image: image2.jpg]



External and Internal Events

External events are those events that pass from a user of the system to the objects within the system. For example, mouse click or key−press by the user are external events.

Internal events are those that pass from one object to another object within a system. For example, stack overflow, a divide error, etc.

Deferred Events

Deferred events are those which are not immediately handled by the object in the current state but are lined up in a queue so that they can be handled by the object in some other state at a later time.

Event Classes

Event class indicates a group of events with common structure and behavior. As with classes of objects, event classes may also be organized in a hierarchical structure. Event classes may have attributes associated with them, time being an implicit attribute. For example, we can consider the events of departure of a flight of an airline, which we can group into the following class −

Flight_Departs (Flight_No, From_City, To_City, Route)

Actions

Activity

Activity is an operation upon the states of an object that requires some time period. They are the ongoing executions within a system that can be interrupted. Activities are shown in activity diagrams that portray the flow from one activity to another.

Action

An action is an atomic operation that executes as a result of certain events. By atomic, it is meant that actions are un-interruptible, i.e., if an action starts executing, it runs into completion without being interrupted by any event. An action may operate upon an object on which an event has been triggered or on other objects that are visible to this object. A set of actions comprise an activity.

Entry and Exit Actions

Entry action is the action that is executed on entering a state, irrespective of the transition that led into it.

Likewise, the action that is executed while leaving a state, irrespective of the transition that led out of it, is called an exit action.

Scenario

Scenario is a description of a specified sequence of actions. It depicts the behavior of objects undergoing a specific action series. The primary scenarios depict the essential sequences and the secondary scenarios depict the alternative sequences.

Diagrams for Dynamic Modelling

There are two primary diagrams that are used for dynamic modelling −

Interaction Diagrams

Interaction diagrams describe the dynamic behavior among different objects. It comprises of a set of objects, their relationships, and the message that the objects send and receive. Thus, an interaction models the behavior of a group of interrelated objects. The two types of interaction diagrams are −

· Sequence Diagram − It represents the temporal ordering of messages in a tabular manner.

· Collaboration Diagram − It represents the structural organization of objects that send and receive messages through vertices and arcs.

State Transition Diagram

State transition diagrams or state machines describe the dynamic behavior of a single object. It illustrates the sequences of states that an object goes through in its lifetime, the transitions of the states, the events and conditions causing the transition and the responses due to the events.

Concurrency of Events

In a system, two types of concurrency may exist. They are −

System Concurrency

Here, concurrency is modelled in the system level. The overall system is modelled as the aggregation of state machines, where each state machine executes concurrently with others.

Concurrency within an Object

Here, an object can issue concurrent events. An object may have states that are composed of sub-states, and concurrent events may occur in each of the sub-states.

Concepts related to concurrency within an object are as follows −

Simple and Composite States

A simple state has no sub-structure. A state that has simpler states nested inside it is called a composite state. A sub-state is a state that is nested inside another state. It is generally used to reduce the complexity of a state machine. Sub-states can be nested to any number of levels.

Composite states may have either sequential sub-states or concurrent sub-states.

Sequential Sub-states

In sequential sub-states, the control of execution passes from one sub-state to another sub-state one after another in a sequential manner. There is at most one initial state and one final state in these state machines.

The following figure illustrates the concept of sequential sub-states.

[image: image3.jpg]Composite_State

Substatel

Transition out of
composite state

Transition into the
composite state




Concurrent Sub-states

In concurrent sub-states, the sub-states execute in parallel, or in other words, each state has concurrently executing state machines within it. Each of the state machines has its own initial and final states. If one concurrent sub-state reaches its final state before the other, control waits at its final state. When all the nested state machines reach their final states, the sub-states join back to a single flow.

The following figure shows the concept of concurrent sub-states.

[image: image4.jpg]Composite_State

() —{ind}—e





