OOSAD Chapter 06:
UML History & More about UML

Unified Modelling Language (UML)

An Introduction:

Unified Modelling Language (UML) is a general purpose modelling language. The main aim of UML is to define a standard way to visualize the way a system has been designed. It is quite similar to blueprints used in other fields of engineering.

UML is not a programming language, it is rather a visual language. We use UML diagrams to portray the behaviour and structure of a system. UML helps software engineers, businessmen and system architects with modelling, design and analysis. The Object Management Group (OMG) adopted Unified Modelling Language as a standard in 1997. Its been managed by OMG ever since. International Organization for Standardization (ISO) published UML as an approved standard in 2005. UML has been revised over the years and is reviewed periodically.

Do we really need UML?
· Complex applications need collaboration and planning from multiple teams and hence require a clear and concise way to communicate amongst them.

· Businessmen do not understand code. So UML becomes essential to communicate with non programmers essential requirements, functionalities and processes of the system.

· A lot of time is saved down the line when teams are able to visualize processes, user interactions and static structure of the system.

UML is linked with object oriented design and analysis. UML makes the use of elements and forms associations between them to form diagrams. Diagrams in UML can be broadly classified as:

1. Structural Diagrams – Capture static aspects or structure of a system. Structural Diagrams include: Component Diagrams, Object Diagrams, Class Diagrams and Deployment Diagrams.

2. Behavior Diagrams – Capture dynamic aspects or behavior of the system. Behavior diagrams include: Use Case Diagrams, State Diagrams, Activity Diagrams and Interaction Diagrams.

[image: image1.png]Diagram
r 1
Benaviour Structure
Diagram Diagram
Activity State Machine Class ‘Component Object
Diagram Diagram Diagram Diagram Diagram
Composite Deployment Package
Interaction Use Case Structure Dagram Disgram
Diagram Diagram —
T Profile
Diagram
ommunication| erachon Sequence Timing
Diagram pa Diagram Diagram

Object Oriented Concepts Used in UML –

1. Class – A class defines the blue print i.e. structure and functions of an object.

2. Objects – Objects help us to decompose large systems and help us to modularize our system. Modularity helps to divide our system into understandable components so that we can build our system piece by piece. An object is the fundamental unit (building block) of a system which is used to depict an entity.

3. Inheritance – Inheritance is a mechanism by which child classes inherit the properties of their parent classes.

4. Abstraction – Mechanism by which implementation details are hidden from user.

5. Encapsulation – Binding data together and protecting it from the outer world is referred to as encapsulation.

6. Polymorphism – Mechanism by which functions or entities are able to exist in different forms.

Additions in UML 2.0 –
· Software development methodologies like agile have been incorporated and scope of original UML specification has been broadened.

· Originally UML specified 9 diagrams. UML 2.x has increased the number of diagrams from 9 to 13. The four diagrams that were added are : timing diagram, communication diagram, interaction overview diagram and composite structure diagram. UML 2.x renamed statechart diagrams to state machine diagrams.

· UML 2.x added the ability to decompose software system into components and sub-components.

Structural UML Diagrams –

1. Class Diagram – The most widely use UML diagram is the class diagram. It is the building block of all object oriented software systems. We use class diagrams to depict the static structure of a system by showing system’s classes,their methods and attributes. Class diagrams also help us identify relationship between different classes or objects.

2. Composite Structure Diagram – We use composite structure diagrams to represent the internal structure of a class and its interaction points with other parts of the system. A composite structure diagram represents relationship between parts and their configuration which determine how the classifier (class, a component, or a deployment node) behaves. They represent internal structure of a structured classifier making the use of parts, ports, and connectors. We can also model collaborations using composite structure diagrams. They are similar to class diagrams except they represent individual parts in detail as compared to the entire class.

3. Object Diagram – An Object Diagram can be referred to as a screenshot of the instances in a system and the relationship that exists between them. Since object diagrams depict behaviour when objects have been instantiated, we are able to study the behaviour of the system at a particular instant. An object diagram is similar to a class diagram except it shows the instances of classes in the system. We depict actual classifiers and their relationships making the use of class diagrams. On the other hand, an Object Diagram represents specific instances of classes and relationships between them at a point of time.

4. Component Diagram – Component diagrams are used to represent the how the physical components in a system have been organized. We use them for modelling implementation details. Component Diagrams depict the structural relationship between software system elements and help us in understanding if functional requirements have been covered by planned development. Component Diagrams become essential to use when we design and build complex systems. Interfaces are used by components of the system to communicate with each other.

5. Deployment Diagram – Deployment Diagrams are used to represent system hardware and its software.It tells us what hardware components exist and what software components run on them.We illustrate system architecture as distribution of software artifacts over distributed targets. An artifact is the information that is generated by system software. They are primarily used when a software is being used, distributed or deployed over multiple machines with different configurations.

6. Package Diagram – We use Package Diagrams to depict how packages and their elements have been organized. A package diagram simply shows us the dependencies between different packages and internal composition of packages. Packages help us to organise UML diagrams into meaningful groups and make the diagram easy to understand. They are primarily used to organise class and use case diagrams.

Behavior Diagrams –

1. State Machine Diagrams – A state diagram is used to represent the condition of the system or part of the system at finite instances of time. It’s a behavioral diagram and it represents the behavior using finite state transitions. State diagrams are also referred to as State machines and State-chart Diagrams . These terms are often used interchangeably.So simply, a state diagram is used to model the dynamic behavior of a class in response to time and changing external stimuli.

2. Activity Diagrams – We use Activity Diagrams to illustrate the flow of control in a system. We can also use an activity diagram to refer to the steps involved in the execution of a use case. We model sequential and concurrent activities using activity diagrams. So, we basically depict workflows visually using an activity diagram.An activity diagram focuses on condition of flow and the sequence in which it happens. We describe or depict what causes a particular event using an activity diagram.

3. Use Case Diagrams – Use Case Diagrams are used to depict the functionality of a system or a part of a system. They are widely used to illustrate the functional requirements of the system and its interaction with external agents(actors). A use case is basically a diagram representing different scenarios where the system can be used. A use case diagram gives us a high level view of what the system or a part of the system does without going into implementation details.

4. Sequence Diagram – A sequence diagram simply depicts interaction between objects in a sequential order i.e. the order in which these interactions take place.We can also use the terms event diagrams or event scenarios to refer to a sequence diagram. Sequence diagrams describe how and in what order the objects in a system function. These diagrams are widely used by businessmen and software developers to document and understand requirements for new and existing systems.

5. Communication Diagram – A Communication Diagram(known as Collaboration Diagram in UML 1.x) is used to show sequenced messages exchanged between objects. A communication diagram focuses primarily on objects and their relationships. We can represent similar information using Sequence diagrams,however, communication diagrams represent objects and links in a free form.

6. Timing Diagram – Timing Diagram are a special form of Sequence diagrams which are used to depict the behavior of objects over a time frame. We use them to show time and duration constraints which govern changes in states and behavior of objects.

7. Interaction Overview Diagram – An Interaction Overview Diagram models a sequence of actions and helps us simplify complex interactions into simpler occurrences. It is a mixture of activity and sequence diagrams.

Here is a simple introduction on different types of UML diagrams, including class, activity, component, collaboration, sequence, use case, deployment, statechart, and package diagrams, listing their purposes and usages.

What is UML?

UML stands for Unified Modeling Language. It's an international industry standard graphical notation used for describing, visualizing, constructing, and documenting the artifacts of a software system.

What're the Purposes of UML?

1. To reason about system behavior.

2. To detect errors and omissions early in the life cycle.

3. To present the proposed designs and communicate with stakeholders.

4. To understand the requirements.

5. To drive implementation.

What are the types of UML diagrams?

1. UML Use Case Diagram
2. UML Sequence Diagram
3. UML Component Diagram
4. UML Class Diagram
5. UML Activity Diagram
6. UML Collaboration Diagram
7. UML Deployment Diagram
8. UML Statechart Diagram
9. UML Package Diagram
[image: image2.png]Classification Types Features
Class Diagram Structure of each class; relationships between
Structure classes
Diagrams Component Diagram Components that make up the software and the
dependencies between them
Deployment Diagram Physical layout of the system
Package Diagram Grouping of model elements such as classes and
relationships between groups (packages)
Use Case Diagram Functions provided by the system, and
Behavioral relationships with external users and other
Diagrams systems

Sequence Diagram

Interaction of objects along the time axis

Collaboration Diagram

Objects inferacting to implement some
behavior within a context

Statechart Diagram

Model life time of an object from creation to
termination

Activity Diagram

System operation flow

UML Use Case Diagram

Purpose

A use case diagram is a type of diagram used in UML during the analysis phase of a project to identify the system functionality. It describes the interaction of people or external device with the system under design. It doesn't show much detail, but only summarizes some of the relationships between use cases, actors, and systems.

Usage

Basically, four elements need to be included in a use case diagram. They are actors, systems, use cases, and relationships. The actors represent whoever or whatever interact with the system. They can be humans, other computers, or other software systems. The use cases represent the actions that are performed by one or more actors for a particular goal. The system is whatever you are developing.

[image: image3.png]Online Shopping UML Diagram

<<Subsystem>>
Online Shopping

'<<Service>>
Authentication

A

Identity
Provider

X

egistered
Customer

7S

‘Web
Customer

Credit
Payment
Service

&

New
Customer

X

Paypal

Learn More at: Use Case Diagram
How to Create a Use Case Diagram
UML Sequence Diagram

Purpose

A sequence diagram is used in UML to describe the analysis and design phases. It's an interaction diagram that details how operations are carried out. A sequence diagram is often used to depict the chronologically-structured event flow through a use case. It's good at presenting the communication relationships between objects; and what messages trigger those communications.

Usage

A lifeline represents typical instances of the components or classes in your system. The messages are shown as arrows. They can be complete, lost or found; synchronous or asynchronous; call or signal. Activate is used to denote participant activation. Once a participant is activated, its lifeline appears. The objects are model elements that represent instances of a class or classes. The classes in UML show architecture and features of the designed system. The actor specifies a role played by a user or any other system that interacts with the subject.

[image: image4.png]Facebook User Authentication Sequence Diagram

sd Facebook user authention

[image: image5.png]Caller Exchanger Recelver Talk

Dial number

{_Ring Tone

Learn More at Sequence Diagram Software
UML Activity Diagram

Purpose

The purpose of an activity diagram is to describe the procedural flow of actions as part of an activity. It is used to model how activities are coordinated to provide a service, to show the events needed to achieve some operation, and to illustrate how the events in a single-use case relate to one another.

Usage

The activity diagrams consist of activities, states, and transitions between activities and states. The initial state is the starting point in the activity diagram. It is the point at which you begin reading the action sequence. An activity is a unit of work that needs to be carried out. The state defines the current condition of an event or activity. Decision activity is introduced in UML to support conditionals in activities. It shows where the exit transition from a state or activity may branch in alternative directions depending on a condition. The bar represents the synchronization of the completion of those activities. Control flow in computer science refers to the order in which the individual statements, instructions, or function calls of an imperative or a declarative program are executed or evaluated. An object flow is the same thing as control flow, but it is shown as a dashed line instead of a solid one.

[image: image6.jpg]Activation of Trial Product

Request Activation

Gemerate C2V File

Request Activation

Y

Business Studio - Product i b= Branded RUS Tool
> Manage Orders Key -> Collect Info

Deliver Product Key Dellver C2V File

Product
e E-mall, FT
0 Activate Product
s
2
-
Business Studio -
> Manage Orders
Deliver V2 File
I
_|Branded RUS Tool
-> Collect info
) VaCFile
E-mail, FT
‘ Apply License ‘
HASP SRM ->
/| Admin Center
Verify License

o=

Learn More at Activity Diagram
UML Collaboration Diagram

Purpose

A collaboration diagram is used to describe a collection of objects that interact to implement some behavior within a context. It's used to model system functionality, which is more specifically, visualize the relationship between objects collaborating to perform a particular task and model the logic of the implementation for a complex operation.

Usage

The collaboration diagram is also called a communication diagram or interaction diagram. It consists of an object, multi-object, actor, association role, delegation, link to self, constraint, and note. Objects are model elements that represent instances of a class or classes. A multi-object represents a set of lifeline instances. A link-to-self is used to link a message which can be sent from an object to itself.

[image: image7.png]call

10400k . Dia Tone: 3 Diat numper
Exchange
4 1ing one
Receiver
6 OF Hook|
5 On Hook

Talk

Learn More at Collaboration Diagram
UML Class Diagram

Purpose

A UML class diagram is not only used to describe the object and information structures in an application, but also show the communication with its users. It provides a wide range of usages, from modeling the static view of an application to describing responsibilities for a system. The composition is a special type of aggregation that denotes strong ownership.

Usage

In a UML class diagram, classes represent an abstraction of entities with common characteristics. Associations represent static relationships between classes. Aggregation is a special type of association in which objects are assembled or configured together to create a more complex object. Generalization is a relationship in which one model element (the child) is based on another model element (the parent). Dependency relationship is a relationship in which one aspect, the client, uses or depends on another aspect, the supplier.

[image: image8.jpg]Library Domain Model UML Class Diagram

[class Ubrary Doman todel

Book
string(0..1] {id)
string
String

joverview: string

lpublisher: String
lpublicationDate: Date

eng: string

=

<<entity>> Book Ttem

0.12 <borrowed

Book

Iname: string {1d)
blography: String
birthDate: Date

<<entity>> Account

0.3 <reserved

number: (idy
istory: History[0..%]
opened: Date

state: Accountstate

barcade: String [0..1] {14}

tag: RFID(0..1] {Id}

sen: String[0..1]

subnect: String

title: String (redefines name)
[sReferenceOnly: Boolean = false

lang: Language (redefines lang}
nUmOfPages: Integer

format: Format

Iborrowed: Date

/loanperiod: Integer (readonly)
[/dueDate: Date {readonly}
/isOverdue: Boolean = faise

accounts

Library

Iname: string
‘Address

<<nterface>>
Search

<<interface>>

L Manage |

<<dataType>> <<dataType>>

| s

Fullame

[<<enumeration>> | [<<enumeration>> |
Language. Accountstate

Jengisn
|Frenen
|German
Spanizn
|zt

lactive
[Frozen
[closed

el]| <<enumerations>

account

Format

paperback
Ihardeover
|Audiobook
lAudio
MP3 D
POF.

Patron

Jname: FullName
laddress: Address

Librarian

FullName!
Address
string

Learn More at UML Class Diagram
UML Component Diagram

Purpose

It allows application designers to verify that a system's required functionality is being implemented by components, thus ensuring that the final system will be acceptable. What's more, the component diagram is a useful communication tool among stakeholders to discuss, analyze, or improve system design.

Usage

The UML component diagram doesn't require many notations, thus very easy to draw. Below is a UML 1.0 component diagram example, requiring only two symbols: component and dependency.

[image: image9.jpg]System Component Diagram

Learn More at UML Component Diagram
UML Deployment Diagram

Purpose

A deployment diagram is a type of diagram used in UML to describe the hardware components used in system implementations and the execution environments and artifacts deployed on the hardware. It allows you to visualize the hardware topology system, model physical hardware elements, and the communication relationship between them, and plan the architecture of the system.

Usage

Nodes represent either hardware devices or software execution environments. They could be connected through communication paths to create network systems of arbitrary complexity. A component represents a modular part of a system. A component defines its behavior in terms of provided and required interfaces. Dependency relationship is a relationship in which one element, the client, uses or depends on another aspect, the supplier.

[image: image10.jpg]UML Deployment Diagram

Database Server

Transaction
Request

Client

Learn More at Deployment Diagram
UML State Diagram

Purpose

The statechart diagrams allow you to model the dynamic nature of a system. They describe all of the possible states of an object as events occur. So the most important purpose of a statechart diagram is to model the lifetime of an object from creation to termination.

Usage

A state is a condition during the life of an object during which it satisfies some requirements, performs some activities, or waits for some external events. A start state is a state that a new object will be in immediately following its creation. An end state is a state that represents the object going out of existence. A transition is a relationship between two states indicating that an object in the first state will perform certain actions and enter the second state when a specified set of events and conditions are satisfied.

[image: image11.png]Initial state Intermediate

/ the object

/!rul.inon

tns tials =
zatson
Setect normai or
die Send order request e
Abnormal
exit Action Contirn order
o Final state (Event)
gty (Faiture)

iral
state

Complete
transaction

Learn More at UML Statechart
UML Package Diagram

Purpose

The package diagrams allow you to organize the elements of a model. They are typically used to depict the high-level organization of a software project. The package diagram can show both structure and dependencies between sub-systems or modules. They can be used to group any construct in the UML, such as classes, actors, and use cases.

Usage

The package element in UML is represented by a folder icon. Each package represents a namespace. Packages can also be members of other packages, providing for a hierarchic structure in which top-level packages are broken down into sub-packages.

[image: image12.png]

