Software Design and Architecture - Chapter 04

Interaction-Oriented Architecture
The primary objective of interaction-oriented architecture is to separate the interaction of user from data abstraction and business data processing. The interaction-oriented software architecture decomposes the system into three major partitions −

· Data module − Data module provides the data abstraction and all business logic.

· Control module − Control module identifies the flow of control and system configuration actions.

· View presentation module − View presentation module is responsible for visual or audio presentation of data output and it also provides an interface for user input.

Interaction-oriented architecture has two major styles − Model-View-Controller (MVC) and Presentation-Abstraction-Control (PAC). Both MVC and PAC propose three components decomposition and are used for interactive applications such as web applications with multiple talks and user interactions. They are different in their flow of control and organization. PAC is an agent-based hierarchical architecture but MVC does not have a clear hierarchical structure.

Model-View-Controller (MVC)

MVC decomposes a given software application into three interconnected parts that help in separating the internal representations of information from the information presented to or accepted from the user.

	Module
	Function

	Model
	Encapsulation the underlying data and business logic

	Controller
	Respond to user action and direct the application flow

	View
	Formats and present the data from model to user.

Model

Model is a central component of MVC that directly manages the data, logic, and constraints of an application. It consists of data components, which maintain the raw application data and application logic for interface.

· It is an independent user interface and captures the behavior of application problem domain.

· It is the domain-specific software simulation or implementation of the application's central structure.

· When there has been change in its state, it gives notification to its associated view to produce updated output and the controller to change the available set of commands.

View

View can be used to represent any output of information in graphical form such as diagram or chart. It consists of presentation components which provide the visual representations of data

· Views request information from their model and generate an output representation to the user.

· Multiple views of the same information are possible, such as a bar chart for management and a tabular view for accountants.

Controller

A controller accepts an input and converts it to commands for the model or view. It consists of input processing components which handle input from the user by modifying the model.

· It acts as an interface between the associated models and views and the input devices.

· It can send commands to the model to update the model’s state and to its associated view to change the view’s presentation of the model.

[image: image1.png]
MVC - I

It is a simple version of MVC architecture where the system is divided into two sub-systems −

· The Controller-View − The controller-view acts as input /output interface and processing is done.

· The Model − The model provides all the data and domain services.

MVC-I Architecture
The model module notifies controller-view module of any data changes so that any graphics data display will be changed accordingly. The controller also takes appropriate action upon the changes.

[image: image2.png]
The connection between controller-view and model can be designed in a pattern (as shown in the above picture) of subscribe-notify whereby the controller-view subscribes to model and model notifies controller-view of any changes.

MVC - II

MVC–II is an enhancement of MVC-I architecture in which the view module and the controller module are separate. The model module plays an active role as in MVC-I by providing all the core functionality and data supported by database.

The view module presents data while controller module accepts input request, validates input data, initiates the model, the view, their connection, and also dispatches the task.

MVC-II Architecture
[image: image3.png]
MVC Applications

MVC applications are effective for interactive applications where multiple views are needed for a single data model and easy to plug-in a new or change interface view.

MVC applications are suitable for applications where there are clear divisions between the modules so that different professionals can be assigned to work on different aspects of such applications concurrently.

Advantages
· There are many MVC vendor framework toolkits available.

· Multiple views synchronized with same data model.

· Easy to plug-in new or replace interface views.

· Used for application development where graphics expertise professionals, programming professionals, and data base development professionals are working in a designed project team.

Disadvantages
· Not suitable for agent-oriented applications such as interactive mobile and robotics applications.

· Multiple pairs of controllers and views based on the same data model make any data model change expensive.

· The division between the View and the Controller is not clear in some cases.

Presentation-Abstraction-Control (PAC)

In PAC, the system is arranged into a hierarchy of many cooperating agents (triads). It was developed from MVC to support the application requirement of multiple agents in addition to interactive requirements.

Each agent has three components −

· The presentation component − Formats the visual and audio presentation of data.

· The abstraction component − Retrieves and processes the data.

· The control component − Handles the task such as the flow of control and communication between the other two components.

The PAC architecture is similar to MVC, in the sense that presentation module is like view module of MVC. The abstraction module looks like model module of MVC and the control module is like the controller module of MVC, but they differ in their flow of control and organization.

There are no direct connections between abstraction component and presentation component in each agent. The control component in each agent is in charge of communications with other agents.

The following figure shows a block diagram for a single agent in PAC design.

[image: image4.png]
PAC with Multiple Agents

In PACs consisting of multiple agents, the top-level agent provides core data and business logics. The bottom level agents define detailed specific data and presentations. The intermediate level or middle level agent acts as coordinator of low-level agents.

· Each agent has its own specific assigned job.

· For some middle level agents the interactive presentations are not required, so they do not have a presentation component.

· The control component is required for all agents through which all the agents communicate with each other.

The following figure shows the Multiple Agents that take part in PAC.

[image: image5.png]
Applications
· Effective for an interactive system where the system can be decomposed into many cooperating agents in a hierarchical manner.

· Effective when the coupling among the agents is expected to be loose so that changes on an agent does not affect others.

· Effective for distributed system where all the agents are distantly distributed and each of them has its own functionalities with data and interactive interface.

· Suitable for applications with rich GUI components where each of them keeps its own current data and interactive interface and needs to communicate with other components.

Advantages

· Support for multi-tasking and multi-viewing

· Support for agent reusability and extensibility

· Easy to plug-in new agent or change an existing one

· Support for concurrency where multiple agents are running in parallel in different threads or different devices or computers

Disadvantages

· Overhead due to the control bridge between presentation and abstraction and the communication of controls among agents.

· Difficult to determine the right number of agents because of loose coupling and high independence among agents.

· Complete separation of presentation and abstraction by control in each agent generate development complexity since communications between agents only take place between the controls of agents

Distributed Architecture

In distributed architecture, components are presented on different platforms and several components can cooperate with one another over a communication network in order to achieve a specific objective or goal.

· In this architecture, information processing is not confined to a single machine rather it is distributed over several independent computers.

· A distributed system can be demonstrated by the client-server architecture which forms the base for multi-tier architectures; alternatives are the broker architecture such as CORBA, and the Service-Oriented Architecture (SOA).

· There are several technology frameworks to support distributed architectures, including .NET, J2EE, CORBA, .NET Web services, AXIS Java Web services, and Globus Grid services.

· Middleware is an infrastructure that appropriately supports the development and execution of distributed applications. It provides a buffer between the applications and the network.

· It sits in the middle of system and manages or supports the different components of a distributed system. Examples are transaction processing monitors, data convertors and communication controllers etc.

Middleware as an infrastructure for distributed system

[image: image6.png]
The basis of a distributed architecture is its transparency, reliability, and availability.

The following table lists the different forms of transparency in a distributed system −

	Sr.No.
	Transparency & Description

	1
	Access
Hides the way in which resources are accessed and the differences in data platform.

	2
	Location
Hides where resources are located.

	3
	Technology
Hides different technologies such as programming language and OS from user.

	4
	Migration / Relocation
Hide resources that may be moved to another location which are in use.

	5
	Replication
Hide resources that may be copied at several location.

	6
	Concurrency
Hide resources that may be shared with other users.

	7
	Failure
Hides failure and recovery of resources from user.

	8
	Persistence
Hides whether a resource (software) is in memory or disk.

Advantages

· Resource sharing − Sharing of hardware and software resources.

· Openness − Flexibility of using hardware and software of different vendors.

· Concurrency − Concurrent processing to enhance performance.

· Scalability − Increased throughput by adding new resources.

· Fault tolerance − The ability to continue in operation after a fault has occurred.

Disadvantages

· Complexity − They are more complex than centralized systems.

· Security − More susceptible to external attack.

· Manageability − More effort required for system management.

· Unpredictability − Unpredictable responses depending on the system organization and network load.

Centralized System vs. Distributed System

	Criteria
	Centralized system
	Distributed System

	Economics
	Low
	High

	Availability
	Low
	High

	Complexity
	Low
	High

	Consistency
	Simple
	High

	Scalability
	Poor
	Good

	Technology
	Homogeneous
	Heterogeneous

	Security
	High
	Low

Client-Server Architecture

The client-server architecture is the most common distributed system architecture which decomposes the system into two major subsystems or logical processes −

· Client − This is the first process that issues a request to the second process i.e. the server.

· Server − This is the second process that receives the request, carries it out, and sends a reply to the client.

In this architecture, the application is modelled as a set of services that are provided by servers and a set of clients that use these services. The servers need not know about clients, but the clients must know the identity of servers, and the mapping of processors to processes is not necessarily 1 : 1

[image: image7.png]
Client-server Architecture can be classified into two models based on the functionality of the client −

Thin-client model

In thin-client model, all the application processing and data management is carried by the server. The client is simply responsible for running the presentation software.

· Used when legacy systems are migrated to client server architectures in which legacy system acts as a server in its own right with a graphical interface implemented on a client

· A major disadvantage is that it places a heavy processing load on both the server and the network.

Thick/Fat-client model

In thick-client model, the server is only in charge for data management. The software on the client implements the application logic and the interactions with the system user.

· Most appropriate for new C/S systems where the capabilities of the client system are known in advance

· More complex than a thin client model especially for management. New versions of the application have to be installed on all clients.

[image: image8.png]
Advantages

· Separation of responsibilities such as user interface presentation and business logic processing.

· Reusability of server components and potential for concurrency

· Simplifies the design and the development of distributed applications

· It makes it easy to migrate or integrate existing applications into a distributed environment.

· It also makes effective use of resources when a large number of clients are accessing a high-performance server.

Disadvantages

· Lack of heterogeneous infrastructure to deal with the requirement changes.

· Security complications.

· Limited server availability and reliability.

· Limited testability and scalability.

· Fat clients with presentation and business logic together.

Multi-Tier Architecture (n-tier Architecture)

Multi-tier architecture is a client–server architecture in which the functions such as presentation, application processing, and data management are physically separated. By separating an application into tiers, developers obtain the option of changing or adding a specific layer, instead of reworking the entire application. It provides a model by which developers can create flexible and reusable applications.

[image: image9.png]
The most general use of multi-tier architecture is the three-tier architecture. A three-tier architecture is typically composed of a presentation tier, an application tier, and a data storage tier and may execute on a separate processor.

Presentation Tier

Presentation layer is the topmost level of the application by which users can access directly such as webpage or Operating System GUI (Graphical User interface). The primary function of this layer is to translate the tasks and results to something that user can understand. It communicates with other tiers so that it places the results to the browser/client tier and all other tiers in the network.

Application Tier (Business Logic, Logic Tier, or Middle Tier)

Application tier coordinates the application, processes the commands, makes logical decisions, evaluation, and performs calculations. It controls an application’s functionality by performing detailed processing. It also moves and processes data between the two surrounding layers.

Data Tier

In this layer, information is stored and retrieved from the database or file system. The information is then passed back for processing and then back to the user. It includes the data persistence mechanisms (database servers, file shares, etc.) and provides API (Application Programming Interface) to the application tier which provides methods of managing the stored data.

[image: image10.png]
Advantages
· Better performance than a thin-client approach and is simpler to manage than a thick-client approach.

· Enhances the reusability and scalability − as demands increase, extra servers can be added.

· Provides multi-threading support and also reduces network traffic.

· Provides maintainability and flexibility

Disadvantages
· Unsatisfactory Testability due to lack of testing tools.

· More critical server reliability and availability.

Broker Architectural Style

Broker Architectural Style is a middleware architecture used in distributed computing to coordinate and enable the communication between registered servers and clients. Here, object communication takes place through a middleware system called an object request broker (software bus).

· Client and the server do not interact with each other directly. Client and server have a direct connection to its proxy which communicates with the mediator-broker.

· A server provides services by registering and publishing their interfaces with the broker and clients can request the services from the broker statically or dynamically by look-up.

· CORBA (Common Object Request Broker Architecture) is a good implementation example of the broker architecture.

Components of Broker Architectural Style

The components of broker architectural style are discussed through following heads −

Broker
Broker is responsible for coordinating communication, such as forwarding and dispatching the results and exceptions. It can be either an invocation-oriented service, a document or message - oriented broker to which clients send a message.

· It is responsible for brokering the service requests, locating a proper server, transmitting requests, and sending responses back to clients.

· It retains the servers’ registration information including their functionality and services as well as location information.

· It provides APIs for clients to request, servers to respond, registering or unregistering server components, transferring messages, and locating servers.

Stub
Stubs are generated at the static compilation time and then deployed to the client side which is used as a proxy for the client. Client-side proxy acts as a mediator between the client and the broker and provides additional transparency between them and the client; a remote object appears like a local one.

The proxy hides the IPC (inter-process communication) at protocol level and performs marshaling of parameter values and un-marshaling of results from the server.

Skeleton
Skeleton is generated by the service interface compilation and then deployed to the server side, which is used as a proxy for the server. Server-side proxy encapsulates low-level system-specific networking functions and provides high-level APIs to mediate between the server and the broker.

It receives the requests, unpacks the requests, unmarshals the method arguments, calls the suitable service, and also marshals the result before sending it back to the client.

Bridge
A bridge can connect two different networks based on different communication protocols. It mediates different brokers including DCOM, .NET remote, and Java CORBA brokers.

Bridges are optional component, which hides the implementation details when two brokers interoperate and take requests and parameters in one format and translate them to another format.

[image: image11.png]
Broker implementation in CORBA
CORBA is an international standard for an Object Request Broker – a middleware to manage communications among distributed objects defined by OMG (object management group).

[image: image12.png]
Service-Oriented Architecture (SOA)

A service is a component of business functionality that is well-defined, self-contained, independent, published, and available to be used via a standard programming interface. The connections between services are conducted by common and universal message-oriented protocols such as the SOAP Web service protocol, which can deliver requests and responses between services loosely.

Service-oriented architecture is a client/server design which support business-driven IT approach in which an application consists of software services and software service consumers (also known as clients or service requesters).

[image: image13.png]
Features of SOA

A service-oriented architecture provides the following features −

· Distributed Deployment − Expose enterprise data and business logic as loosely, coupled, discoverable, structured, standard-based, coarse-grained, stateless units of functionality called services.

· Composability − Assemble new processes from existing services that are exposed at a desired granularity through well defined, published, and standard complaint interfaces.

· Interoperability − Share capabilities and reuse shared services across a network irrespective of underlying protocols or implementation technology.

· Reusability − Choose a service provider and access to existing resources exposed as services.

SOA Operation

The following figure illustrates how does SOA operate −

[image: image14.png]
Advantages
· Loose coupling of service–orientation provides great flexibility for enterprises to make use of all available service recourses irrespective of platform and technology restrictions.

· Each service component is independent from other services due to the stateless service feature.

· The implementation of a service will not affect the application of the service as long as the exposed interface is not changed.

· A client or any service can access other services regardless of their platform, technology, vendors, or language implementations.

· Reusability of assets and services since clients of a service only need to know its public interfaces, service composition.

· SOA based business application development are much more efficient in terms of time and cost.

· Enhances the scalability and provide standard connection between systems.

· Efficient and effective usage of ‘Business Services’.

· Integration becomes much easier and improved intrinsic interoperability.

· Abstract complexity for developers and energize business processes closer to end users.

