Software Design and Architecture - Chapter 01

Difference between Forward Engineering and Reverse Engineering
Forward Engineering:
Forward Engineering is a method of creating or making an application with the help of the given requirements. Forward engineering is also known as Renovation and Reclamation. Forward engineering is required high proficiency skill. It takes more time to construct or develop an application.

Reverse Engineering:
Reverse Engineering is also known as backward engineering, is the process of forward engineering in reverse. In this, the information are collected from the given or exist application. It takes less time than forward engineering to develop an application. In reverse engineering the application are broken to extract knowledge or its architecture.

[image: image1.png]Understanding Re-engineering

and System
transformation

Reverse Engineering

Difference between Forward Engineering and Reverse Engineering:

	S.NO
	Forward Engineering
	Reverse Engineering

	1.
	In forward engineering, the application are developed with the given requirements.
	In reverse engineering or backward engineering, the information are collected from the given application.

	2.
	Forward Engineering is high proficiency skill.
	Reverse Engineering or backward engineering is low proficiency skill.

	3.
	Forward Engineering takes more time to develop an application.
	While Reverse Engineering or backward engineering takes less time to develop an application.

	4.
	The nature of forward engineering is Prescriptive.
	The nature of reverse engineering or backward engineering is Adaptive.

	5.
	In forward engineering, production is started with given requirements.
	In reverse engineering, production is started by taking existing product.

	6.
	The example of forward engineering are construction of electronic kit, construction of DC MOTOR etc.
	The example of backward engineering are research on Instruments etc.

Design Patterns

Design patterns represent the best practices used by experienced object-oriented software developers. Design patterns are solutions to general problems that software developers faced during software development. These solutions were obtained by trial and error by numerous software developers over quite a substantial period of time.

This tutorial will take you through step by step approach and examples using Java while learning Design Pattern concepts.

What is Gang of Four (GOF)?

In 1994, four authors Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides published a book titled Design Patterns - Elements of Reusable Object-Oriented Software which initiated the concept of Design Pattern in Software development.

These authors are collectively known as Gang of Four (GOF). According to these authors design patterns are primarily based on the following principles of object orientated design.

· Program to an interface not an implementation

· Favour object composition over inheritance

Usage of Design Pattern

Design Patterns have two main usages in software development.

Common platform for developers

Design patterns provide a standard terminology and are specific to particular scenario. For example, a singleton design pattern signifies use of single object so all developers familiar with single design pattern will make use of single object and they can tell each other that program is following a singleton pattern.

Best Practices

Design patterns have been evolved over a long period of time and they provide best solutions to certain problems faced during software development. Learning these patterns helps inexperienced developers to learn software design in an easy and faster way.

Types of Design Patterns

As per the design pattern reference book Design Patterns - Elements of Reusable Object-Oriented Software , there are 23 design patterns which can be classified in three categories: Creational, Structural and Behavioural patterns. We'll also discuss another category of design pattern: J2EE design patterns.

	S.N.
	Pattern & Description

	1
	Creational Patterns
These design patterns provide a way to create objects while hiding the creation logic, rather than instantiating objects directly using new operator. This gives program more flexibility in deciding which objects need to be created for a given use case.

	2
	Structural Patterns
These design patterns concern class and object composition. Concept of inheritance is used to compose interfaces and define ways to compose objects to obtain new functionalities.

	3
	Behavioural Patterns
These design patterns are specifically concerned with communication between objects.

	4
	J2EE Patterns
These design patterns are specifically concerned with the presentation tier. These patterns are identified by Sun Java Centre.

Factory Pattern

Factory pattern is one of the most used design patterns in Java. This type of design pattern comes under creational pattern as this pattern provides one of the best ways to create an object.

In Factory pattern, we create object without exposing the creation logic to the client and refer to newly created object using a common interface.

Implementation

We're going to create a Shape interface and concrete classes implementing the Shape interface. A factory class ShapeFactory is defined as a next step.

FactoryPatternDemo, our demo class will use ShapeFactory to get a Shape object. It will pass information (CIRCLE / RECTANGLE / SQUARE) to ShapeFactory to get the type of object it needs.

[image: image2.jpg]Shape

FactoryPattern

<cinterface>> Demo.
+main() : void
implements implements N
implements.
Circle Square Rectangle
ShapeFactory.
creates|
ke
i) v % i +draw) : void
draw() : void draw() : void () etShapel):

Shape

Step 1

Create an interface.

Shape.java

public interface Shape {
 void draw();
}
Step 2

Create concrete classes implementing the same interface.

Rectangle.java

public class Rectangle implements Shape {
 @Override
 public void draw() {
 System.out.println("Inside Rectangle::draw() method.");
 }
}
Square.java

public class Square implements Shape {
 @Override
 public void draw() {
 System.out.println("Inside Square::draw() method.");
 }
}
Circle.java

public class Circle implements Shape {
 @Override
 public void draw() {
 System.out.println("Inside Circle::draw() method.");
 }
}
Step 3

Create a Factory to generate object of concrete class based on given information.

ShapeFactory.java

public class ShapeFactory {
 //use getShape method to get object of type shape
 public Shape getShape(String shapeType){
 if(shapeType == null){
 return null;
 }

 if(shapeType.equalsIgnoreCase("CIRCLE")){
 return new Circle();
 } else if(shapeType.equalsIgnoreCase("RECTANGLE")){
 return new Rectangle();
 } else if(shapeType.equalsIgnoreCase("SQUARE")){
 return new Square();
 }
 return null;
 }
}
Step 4

Use the Factory to get object of concrete class by passing an information such as type.

FactoryPatternDemo.java

public class FactoryPatternDemo {
 public static void main(String[] args) {
 ShapeFactory shapeFactory = new ShapeFactory();
 //get an object of Circle and call its draw method.
 Shape shape1 = shapeFactory.getShape("CIRCLE");
 //call draw method of Circle
 shape1.draw();
 //get an object of Rectangle and call its draw method.
 Shape shape2 = shapeFactory.getShape("RECTANGLE");
 //call draw method of Rectangle
 shape2.draw();
 //get an object of Square and call its draw method.
 Shape shape3 = shapeFactory.getShape("SQUARE");
 //call draw method of square
 shape3.draw();
 }
}
Step 5

Verify the output.

Inside Circle::draw() method.

Inside Rectangle::draw() method.

Inside Square::draw() method.

Singleton Pattern

Singleton pattern is one of the simplest design patterns in Java. This type of design pattern comes under creational pattern as this pattern provides one of the best ways to create an object.

This pattern involves a single class which is responsible to create an object while making sure that only single object gets created. This class provides a way to access its only object which can be accessed directly without need to instantiate the object of the class.

Implementation

We're going to create a SingleObject class. SingleObject class have its constructor as private and have a static instance of itself.

SingleObject class provides a static method to get its static instance to outside world. SingletonPatternDemo, our demo class will use SingleObject class to get a SingleObject object.

[image: image3.jpg]SingletonPatternDemo

+main() : void

asks

SingleObject

-instance: SingleObject

~SingleObject ()
+getinstance():SingleObject
+showMessagef()void

retumns

Step 1

Create a Singleton Class.

SingleObject.java

public class SingleObject {
 //create an object of SingleObject
 private static SingleObject instance = new SingleObject();
 //make the constructor private so that this class cannot be
 //instantiated
 private SingleObject(){}
 //Get the only object available
 public static SingleObject getInstance(){
 return instance;
 }
 public void showMessage(){
 System.out.println("Hello World!");
 }
}
Step 2

Get the only object from the singleton class.

SingletonPatternDemo.java

public class SingletonPatternDemo {
 public static void main(String[] args) {
 //illegal construct
 //Compile Time Error: The constructor SingleObject() is not visible
 //SingleObject object = new SingleObject();
 //Get the only object available
 SingleObject object = SingleObject.getInstance();
 //show the message
 object.showMessage();
 }
}
Step 3

Verify the output.

Hello World!

Builder Pattern

Builder pattern builds a complex object using simple objects and using a step by step approach. This type of design pattern comes under creational pattern as this pattern provides one of the best ways to create an object.

A Builder class builds the final object step by step. This builder is independent of other objects.

Implementation

We have considered a business case of fast-food restaurant where a typical meal could be a burger and a cold drink. Burger could be either a Veg Burger or Chicken Burger and will be packed by a wrapper. Cold drink could be either a coke or pepsi and will be packed in a bottle.

We are going to create an Item interface representing food items such as burgers and cold drinks and concrete classes implementing the Item interface and a Packing interface representing packaging of food items and concrete classes implementing the Packing interface as burger would be packed in wrapper and cold drink would be packed as bottle.

We then create a Meal class having ArrayList of Item and a MealBuilder to build different types of Meal objects by combining Item. BuilderPatternDemo, our demo class will use MealBuilder to build a Meal.

[image: image4.jpg]Ttem Meal MealBuilder
uses [ems Araylist Stems | 219
+name() : String. +addltem(ltem item) : void +prepareVegMeal() :
+packing(): Packing +getCost() - float WMeal
+price() : float +showitems() : void +prepareNonVegMeal()
x : Meal
implement
asks
Packing

BuilderPattern

T Demo

implement TR +main() : void
Burger Wrapper Botle | .. [Coldrink
ses
T T
extend extend

VegBurger | [ChickenBurger Pepsi Coke

Step 1

Create an interface Item representing food item and packing.

Item.java

public interface Item {
 public String name();
 public Packing packing();
 public float price();

}
Packing.java

public interface Packing {
 public String pack();
}
Step 2

Create concrete classes implementing the Packing interface.

Wrapper.java

public class Wrapper implements Packing {
 @Override
 public String pack() {
 return "Wrapper";
 }
}
Bottle.java

public class Bottle implements Packing {
 @Override
 public String pack() {
 return "Bottle";
 }
}
Step 3

Create abstract classes implementing the item interface providing default functionalities.

Burger.java

public abstract class Burger implements Item {
 @Override
 public Packing packing() {
 return new Wrapper();
 }
 @Override
 public abstract float price();
}
ColdDrink.java

public abstract class ColdDrink implements Item {

@Override

public Packing packing() {
 return new Bottle();

}

@Override

public abstract float price();
}
Step 4

Create concrete classes extending Burger and ColdDrink classes

VegBurger.java

public class VegBurger extends Burger {
 @Override
 public float price() {
 return 25.0f;
 }
 @Override
 public String name() {
 return "Veg Burger";
 }
}
ChickenBurger.java

public class ChickenBurger extends Burger {
 @Override
 public float price() {
 return 50.5f;
 }
 @Override
 public String name() {
 return "Chicken Burger";
 }
}
Coke.java

public class Coke extends ColdDrink {
 @Override
 public float price() {
 return 30.0f;
 }
 @Override
 public String name() {
 return "Coke";
 }
}
Pepsi.java

public class Pepsi extends ColdDrink {
 @Override
 public float price() {
 return 35.0f;
 }
 @Override
 public String name() {
 return "Pepsi";
 }
}
Step 5

Create a Meal class having Item objects defined above.

Meal.java

import java.util.ArrayList;
import java.util.List;
public class Meal {
 private List<Item> items = new ArrayList<Item>();

 public void addItem(Item item){
 items.add(item);
 }
 public float getCost(){
 float cost = 0.0f;
 for (Item item : items) {
 cost += item.price();
 }

 return cost;
 }
 public void showItems(){
 for (Item item : items) {
 System.out.print("Item : " + item.name());
 System.out.print(", Packing : " + item.packing().pack());
 System.out.println(", Price : " + item.price());
 }

 }

}
Step 6

Create a MealBuilder class, the actual builder class responsible to create Meal objects.

MealBuilder.java

public class MealBuilder {
 public Meal prepareVegMeal (){
 Meal meal = new Meal();
 meal.addItem(new VegBurger());
 meal.addItem(new Coke());
 return meal;
 }

 public Meal prepareNonVegMeal (){
 Meal meal = new Meal();
 meal.addItem(new ChickenBurger());
 meal.addItem(new Pepsi());
 return meal;
 }
}
Step 7

BuiderPatternDemo uses MealBuider to demonstrate builder pattern.

BuilderPatternDemo.java

public class BuilderPatternDemo {
 public static void main(String[] args) {
 MealBuilder mealBuilder = new MealBuilder();
 Meal vegMeal = mealBuilder.prepareVegMeal();
 System.out.println("Veg Meal");
 vegMeal.showItems();
 System.out.println("Total Cost: " + vegMeal.getCost());
 Meal nonVegMeal = mealBuilder.prepareNonVegMeal();
 System.out.println("\n\nNon-Veg Meal");
 nonVegMeal.showItems();
 System.out.println("Total Cost: " + nonVegMeal.getCost());
 }
}
Step 8

Verify the output.

Veg Meal

Item : Veg Burger, Packing : Wrapper, Price : 25.0

Item : Coke, Packing : Bottle, Price : 30.0

Total Cost: 55.0

Non-Veg Meal

Item : Chicken Burger, Packing : Wrapper, Price : 50.5

Item : Pepsi, Packing : Bottle, Price : 35.0

Total Cost: 85.5

MVC Pattern

MVC Pattern stands for Model-View-Controller Pattern. This pattern is used to separate application's concerns.

· Model - Model represents an object or JAVA POJO carrying data. It can also have logic to update controller if its data changes.

· View - View represents the visualization of the data that model contains.

· Controller - Controller acts on both model and view. It controls the data flow into model object and updates the view whenever data changes. It keeps view and model separate.

Implementation

We are going to create a Student object acting as a model.StudentView will be a view class which can print student details on console and StudentController is the controller class responsible to store data in Student object and update view StudentView accordingly.

MVCPatternDemo, our demo class, will use StudentController to demonstrate use of MVC pattern.

[image: image5.jpg]StudentController

model: Student

updates| views Studentuiew
W CrattermDemo
Studantview uses
“studentcontroler()
fe—{ ssetstudentiame() vod [
- “getstudentiame() :trng “man() void
SornstudentDetals (-void i +reteveStudenteromba
sgetstudentRoliNl) :String tabase) :Student

<updateView() :void

Student

“roliNo String
name: String

+getName(: String
+setName() : void
+getRollNo() sString
+setRoliNo) +void

Step 1

Create Model.

Student.java

public class Student {
 private String rollNo;
 private String name;
 public String getRollNo() {
 return rollNo;
 }
 public void setRollNo(String rollNo) {
 this.rollNo = rollNo;
 }
 public String getName() {
 return name;
 }
 public void setName(String name) {
 this.name = name;
 }
}
Step 2

Create View.

StudentView.java

public class StudentView {
 public void printStudentDetails(String studentName, String studentRollNo){
 System.out.println("Student: ");
 System.out.println("Name: " + studentName);
 System.out.println("Roll No: " + studentRollNo);
 }
}
Step 3

Create Controller.

StudentController.java

public class StudentController {
 private Student model;
 private StudentView view;
 public StudentController(Student model, StudentView view){
 this.model = model;
 this.view = view;
 }
 public void setStudentName(String name){
 model.setName(name);

 }
 public String getStudentName(){
 return model.getName();

 }
 public void setStudentRollNo(String rollNo){
 model.setRollNo(rollNo);

 }
 public String getStudentRollNo(){
 return model.getRollNo();

 }
 public void updateView(){

 view.printStudentDetails(model.getName(), model.getRollNo());
 }

}
Step 4

Use the StudentController methods to demonstrate MVC design pattern usage.

MVCPatternDemo.java

public class MVCPatternDemo {
 public static void main(String[] args) {
 //fetch student record based on his roll no from the database
 Student model = retriveStudentFromDatabase();
 //Create a view : to write student details on console
 StudentView view = new StudentView();
 StudentController controller = new StudentController(model, view);
 controller.updateView();
 //update model data
 controller.setStudentName("John");
 controller.updateView();
 }
 private static Student retriveStudentFromDatabase(){
 Student student = new Student();
 student.setName("Robert");
 student.setRollNo("10");
 return student;
 }
}
Step 5

Verify the output.

Student:

Name: Robert

Roll No: 10

Student:

Name: John

Roll No: 10

 Software Architect Job Description Template

We are seeking a highly skilled software architect to lead our development team in creating software solutions that meet our clients' needs. You will be responsible for communicating with clients to determine their requirements, creating comprehensive solution plans, and leading a team of software engineers as they develop polished final products.

To be successful as a software architect, you should be an expert problem solver with a strong understanding of the broad range of software technologies and platforms available. Top candidates will also be excellent leaders and communicators.

Software Architect Responsibilities:

· Collaborating with various stakeholders to determine software requirements.

· Creating high-level product specifications and design documents.

· Providing the development team with architectural blueprints to follow.

· Guiding and assisting the development team throughout the process.

· Troubleshooting and resolving issues with coding or design.

· Ensuring that you and the team adhere to development schedules and deadlines.

· Presenting regular progress reports and setting goals.

· Testing the final product to ensure it is completely functional and meets requirements.

· Updating software solutions as required.

Software Architect Requirements:

· Master's degree in computer science.

· Extensive experience in software development and project management.

· Solid understanding of a variety of programming tools and development platforms.

· Excellent organizational and leadership abilities.

· Highly analytical mindset, with an ability to see both the big picture and the details.

· Strong communication and presentation skills.
Types of software architects
	Architect type
	Strategic thinking
	System interactions
	Communication
	Design

	enterprise architect
	across projects
	highly abstracted
	across organization
	minimal, high level

	solutions architect
	focused on solution
	very detailed
	multiple teams
	detailed

	application architect
	component re-use, maintainability
	centered on single application
	single project
	very detailed

The main characteristics of a software architect

· Broad and deep technical knowledge. This should be obvious since one cannot become a software architect with a musical background. The architect usually has knowledge in several technological stacks at a decent level and should have a good understanding of a few other ones. The software architect should also be prepared to compose a large number of technical documentation, reports, and diagrams.

· Responsibility. A software architect should understand those architect decisions are usually the most expensive. A person in this position should take the most responsible approach to his work and to the decisions made. If the developer’s error costs a couple days of work of one person, then the architect’s mistake can cost person-years on complex projects.

· Communicability. A good specialist should be able to talk with customers in the language of business, managers of all levels, business analysts and developers in their languages. To explain all the action correctly, a software architect has to grow a natural charisma and ability to convince people. Usually, architects are laconic, eloquent and competent speakers. While software architects participate in discussions they should be able to persuade the others.

· Management skills. This includes both organizational and leadership skills. The ability to lead a team, which may be distributed and composed of very different specialists.

· Stress resistance. A software architect works with different people from different areas, rapidly changing demands or even with changing business environments. Therefore, it is necessary to be ready for stress and to look for some ways to escape negative emotions. Work is always more pleasant when you’re happy.

· Analytic skills. One of the most important tasks is the ability to represent an abstract problem in the form of some finite real object of the system, which can be evaluated, designed and developed.

