Software Design and Architecture - Chapter 05

Component-Based Architecture

Component-based architecture focuses on the decomposition of the design into individual functional or logical components that represent well-defined communication interfaces containing methods, events, and properties. It provides a higher level of abstraction and divides the problem into sub-problems, each associated with component partitions.

The primary objective of component-based architecture is to ensure component reusability. A component encapsulates functionality and behaviors of a software element into a reusable and self-deployable binary unit. There are many standard component frameworks such as COM/DCOM, JavaBean, EJB, CORBA, .NET, web services, and grid services. These technologies are widely used in local desktop GUI application design such as graphic JavaBean components, MS ActiveX components, and COM components which can be reused by simply drag and drop operation.

Component-oriented software design has many advantages over the traditional object-oriented approaches such as −

· Reduced time in market and the development cost by reusing existing components.

· Increased reliability with the reuse of the existing components.

What is a Component?

A component is a modular, portable, replaceable, and reusable set of well-defined functionality that encapsulates its implementation and exporting it as a higher-level interface.

A component is a software object, intended to interact with other components, encapsulating certain functionality or a set of functionalities. It has an obviously defined interface and conforms to a recommended behavior common to all components within an architecture.

A software component can be defined as a unit of composition with a contractually specified interface and explicit context dependencies only. That is, a software component can be deployed independently and is subject to composition by third parties.

Views of a Component

A component can have three different views − object-oriented view, conventional view, and process-related view.

Object-oriented view
A component is viewed as a set of one or more cooperating classes. Each problem domain class (analysis) and infrastructure class (design) are explained to identify all attributes and operations that apply to its implementation. It also involves defining the interfaces that enable classes to communicate and cooperate.

Conventional view
It is viewed as a functional element or a module of a program that integrates the processing logic, the internal data structures that are required to implement the processing logic and an interface that enables the component to be invoked and data to be passed to it.

Process-related view
In this view, instead of creating each component from scratch, the system is building from existing components maintained in a library. As the software architecture is formulated, components are selected from the library and used to populate the architecture.

· A user interface (UI) component includes grids, buttons referred as controls, and utility components expose a specific subset of functions used in other components.

· Other common types of components are those that are resource intensive, not frequently accessed, and must be activated using the just-in-time (JIT) approach.

· Many components are invisible which are distributed in enterprise business applications and internet web applications such as Enterprise JavaBean (EJB), .NET components, and CORBA components.

Characteristics of Components

· Reusability − Components are usually designed to be reused in different situations in different applications. However, some components may be designed for a specific task.

· Replaceable − Components may be freely substituted with other similar components.

· Not context specific − Components are designed to operate in different environments and contexts.

· Extensible − A component can be extended from existing components to provide new behavior.

· Encapsulated − A A component depicts the interfaces, which allow the caller to use its functionality, and do not expose details of the internal processes or any internal variables or state.

· Independent − Components are designed to have minimal dependencies on other components.

Principles of Component−Based Design

A component-level design can be represented by using some intermediary representation (e.g. graphical, tabular, or text-based) that can be translated into source code. The design of data structures, interfaces, and algorithms should conform to well-established guidelines to help us avoid the introduction of errors.

· The software system is decomposed into reusable, cohesive, and encapsulated component units.

· Each component has its own interface that specifies required ports and provided ports; each component hides its detailed implementation.

· A component should be extended without the need to make internal code or design modifications to the existing parts of the component.

· Depend on abstractions component do not depend on other concrete components, which increase difficulty in expendability.

· Connectors connected components, specifying and ruling the interaction among components. The interaction type is specified by the interfaces of the components.

· Components interaction can take the form of method invocations, asynchronous invocations, broadcasting, message driven interactions, data stream communications, and other protocol specific interactions.

· For a server class, specialized interfaces should be created to serve major categories of clients. Only those operations that are relevant to a particular category of clients should be specified in the interface.

· A component can extend to other components and still offer its own extension points. It is the concept of plug-in based architecture. This allows a plugin to offer another plugin API.


Component-Level Design Guidelines

Creates a naming conventions for components that are specified as part of the architectural model and then refines or elaborates as part of the component-level model.

· Attains architectural component names from the problem domain and ensures that they have meaning to all stakeholders who view the architectural model.

· Extracts the business process entities that can exist independently without any associated dependency on other entities.

· Recognizes and discover these independent entities as new components.

· Uses infrastructure component names that reflect their implementation-specific meaning.

· Models any dependencies from left to right and inheritance from top (base class) to bottom (derived classes).

· Model any component dependencies as interfaces rather than representing them as a direct component-to-component dependency.

Conducting Component-Level Design

Recognizes all design classes that correspond to the problem domain as defined in the analysis model and architectural model.

· Recognizes all design classes that correspond to the infrastructure domain.

· Describes all design classes that are not acquired as reusable components, and specifies message details.

· Identifies appropriate interfaces for each component and elaborates attributes and defines data types and data structures required to implement them.

· Describes processing flow within each operation in detail by means of pseudo code or UML activity diagrams.

· Describes persistent data sources (databases and files) and identifies the classes required to manage them.

· Develop and elaborates behavioral representations for a class or component. This can be done by elaborating the UML state diagrams created for the analysis model and by examining all use cases that are relevant to the design class.

· Elaborates deployment diagrams to provide additional implementation detail.

· Demonstrates the location of key packages or classes of components in a system by using class instances and designating specific hardware and operating system environment.

· The final decision can be made by using established design principles and guidelines. Experienced designers consider all (or most) of the alternative design solutions before settling on the final design model.

Advantages

· Ease of deployment − As new compatible versions become available, it is easier to replace existing versions with no impact on the other components or the system as a whole.

· Reduced cost − The use of third-party components allows you to spread the cost of development and maintenance.

· Ease of development − Components implement well-known interfaces to provide defined functionality, allowing development without impacting other parts of the system.

· Reusable − The use of reusable components means that they can be used to spread the development and maintenance cost across several applications or systems.

· Modification of technical complexity − A component modifies the complexity through the use of a component container and its services.

· Reliability − The overall system reliability increases since the reliability of each individual component enhances the reliability of the whole system via reuse.

· System maintenance and evolution − Easy to change and update the implementation without affecting the rest of the system.

· Independent − Independency and flexible connectivity of components. Independent development of components by different group in parallel. Productivity for the software development and future software development.

User Interface

User interface is the first impression of a software system from the user’s point of view. Therefore any software system must satisfy the requirement of user. UI mainly performs two functions −

· Accepting the user’s input

· Displaying the output

User interface plays a crucial role in any software system. It is possibly the only visible aspect of a software system as −

· Users will initially see the architecture of software system’s external user interface without considering its internal architecture.

· A good user interface must attract the user to use the software system without mistakes. It should help the user to understand the software system easily without misleading information. A bad UI may cause market failure against the competition of software system.

· UI has its syntax and semantics. The syntax comprises component types such as textual, icon, button etc. and usability summarizes the semantics of UI. The quality of UI is characterized by its look and feel (syntax) and its usability (semantics).

· There are basically two major kinds of user interface − a) Textual b) Graphical.

· Software in different domains may require different style of its user interface for e.g. calculator need only a small area for displaying numeric numbers, but a big area for commands, A web page needs forms, links, tabs, etc.

Graphical User Interface

A graphical user interface is the most common type of user interface available today. It is a very user friendly because it makes use of pictures, graphics, and icons - hence why it is called 'graphical'.

It is also known as a WIMP interface because it makes use of −

· Windows − A rectangular area on the screen where the commonly used applications run.

· Icons − A picture or symbol which is used to represent a software application or hardware device.

· Menus − A list of options from which the user can choose what they require.

· Pointers − A symbol such as an arrow which moves around the screen as user moves the mouse. It helps user to select objects.

Design of User Interface

It starts with task analysis which understands the user’s primary tasks and problem domain. It should be designed in terms of User’s terminology and outset of user’s job rather than programmer’s.

· To perform user interface analysis, the practitioner needs to study and understand four elements −

· The users who will interact with the system through the interface

· The tasks that end users must perform to do their work

· The content that is presented as part of the interface

· The work environment in which these tasks will be conducted

· Proper or good UI design works from the user’s capabilities and limitations not the machines. While designing the UI, knowledge of the nature of the user's work and environment is also critical.

· The task to be performed can then be divided which are assigned to the user or machine, based on knowledge of the capabilities and limitations of each. The design of a user interface is often divided into four different levels −

· The conceptual level − It describes the basic entities considering the user's view of the system and the actions possible upon them.

· The semantic level − It describes the functions performed by the system i.e. description of the functional requirements of the system, but does not address how the user will invoke the functions.

· The syntactic level − It describes the sequences of inputs and outputs required to invoke the functions described.

· The lexical level − It determines how the inputs and outputs are actually formed from primitive hardware operations.

· User interface design is an iterative process, where all the iteration explains and refines the information developed in the preceding steps. General steps for user interface design

· Defines user interface objects and actions (operations).

· Defines events (user actions) that will cause the state of the user interface to change.

· Indicates how the user interprets the state of the system from information provided through the interface.

· Describe each interface state as it will actually look to the end user.

User Interface Development Process

It follows a spiral process as shown in the following diagram −

[image: image1.png]Interface Analysis

Interface Validation

LR

T )

Implementation Interface Design





Interface analysis
It concentrates or focuses on users, tasks, content, and work environment who will interact with the system. Defines the human - and computer-oriented tasks that are required to achieve system function.

Interface design
It defines a set of interface objects, actions, and their screen representations that enable a user to perform all defined tasks in a manner that meets every usability objective defined for the system.

Interface construction
It starts with a prototype that enables usage scenarios to be evaluated and continues with development tools to complete the construction.

Interface validation
It focuses on the ability of the interface to implement every user task correctly, accommodate all task variations, to achieve all general user requirements, and the degree to which the interface is easy to use and easy to learn.

User Interface Models
When a user interface is analyzed and designed following four models are used −

User profile model
· Created by a user or software engineer, which establishes the profile of the end-users of the system based on age, gender, physical abilities, education, motivation, goals, and personality.

· Considers syntactic and semantic knowledge of the user and classifies users as novices, knowledgeable intermittent, and knowledgeable frequent users.

Design model
· Created by a software engineer which incorporates data, architectural, interface, and procedural representations of the software.

· Derived from the analysis model of the requirements and controlled by the information in the requirements specification which helps in defining the user of the system.

Implementation model
· Created by the software implementers who work on look and feel of the interface combined with all supporting information (books, videos, help files) that describes system syntax and semantics.

· Serves as a translation of the design model and attempts to agree with the user's mental model so that users then feel comfortable with the software and use it effectively.

User's mental model
· Created by the user when interacting with the application. It contains the image of the system that users carry in their heads.

· Often called the user's system perception and correctness of the description depends upon the user’s profile and overall familiarity with the software in the application domain.

Design Considerations of User Interface

User centered

A user interface must be a user-centered product which involves users throughout a product’s development lifecycle. The prototype of a user interface should be available to users and feedback from users, should be incorporated into the final product.

Simple and Intuitive

UI provides simplicity and intuitiveness so that it can be used quickly and effectively without instructions. GUI are better than textual UI, as GUI consists of menus, windows, and buttons and is operated by simply using mouse.

Place Users in Control

Do not force users to complete predefined sequences. Give them options—to cancel or to save and return to where they left off. Use terms throughout the interface that users can understand, rather than system or developer terms.

Provide users with some indication that an action has been performed, either by showing them the results of the action, or acknowledging that the action has taken place successfully.

Transparency

UI must be transparent that helps users to feel like they are reaching right through computer and directly manipulating the objects they are working with. The interface can be made transparent by giving users work objects rather than system objects. For example, users should understand that their system password must be at least 6 characters, not how many bytes of storage a password must be.

Use progressive disclosure

Always provide easy access to common features and frequently used actions. Hide less common features and actions and allow users to navigate them. Do not try to put every piece of information in one main window. Use secondary window for information that is not key information.

Consistency

UI maintains the consistency within and across product, keep interaction results the same, UI commands and menus should have the same format, command punctuations should be similar and parameters should be passed to all commands in the same way. UI should not have behavior’s that can surprise the users and should include the mechanisms that allows users to recover from their mistakes.

Integration

The software system should integrate smoothly with other applications such as MS notepad and MS-Office. It can use Clipboard commands directly to perform data interchange.

Component Oriented

UI design must be modular and incorporate component oriented architecture so that the design of UI will have the same requirements as the design of the main body of the software system. The modules can easily be modified and replaced without affecting of other parts of the system.

Customizable

The architecture of whole software system incorporates plug-in modules, which allow many different people independently extend the software. It allows individual users to select from various available forms in order to suit personal preferences and needs.

Reduce Users’ Memory Load

Do not force users to have to remember and repeat what the computer should be doing for them. For example, when filling in online forms, customer names, addresses, and telephone numbers should be remembered by the system once a user has entered them, or once a customer record has been opened.

User interfaces support long-term memory retrieval by providing users with items for them to recognize rather than having to recall information.

Separation

UI must be separated from the logic of the system through its implementation for increasing reusability and maintainability.

Architecture Techniques

Iterative and Incremental Approach

It is an iterative and incremental approach consisting of five main steps that helps to generate candidate solutions. This candidate solution can further be refined by repeating these steps and finally create an architecture design that best fits our application. At the end of the process, we can review and communicate our architecture to all interested parties.

It is just one possible approach. There are many other more formal approaches that defining, reviewing, and communicating your architecture.

Identify Architecture Goal

Identify the architecture goal that forms the architecture and design process. Flawless and defined objectives emphasize on the architecture, solve the right problems in the design and helps to determine when the current phase has completed, and ready to move to the next phase.

This step includes the following activities −

· Identify your architecture goals at the start.

· Identify the consumer of our architecture.

· Identify the constraints.

Examples of architecture activities include building a prototype to get feedback on the order-processing UI for a Web application, building a customer order-tracking application, and designing the authentication, and authorization architecture for an application in order to perform a security review.

Key Scenarios

This step puts emphasis on the design that matters the most. A scenario is an extensive and covering description of a user's interaction with the system.

Key scenarios are those that are considered the most important scenarios for the success of your application. It helps to make decisions about the architecture. The goal is to achieve a balance among the user, business, and system objectives. For example, user authentication is a key scenario because they are an intersection of a quality attribute (security) with important functionality (how a user logs into your system).

Application Overview

Build an overview of application, which makes the architecture more touchable, connecting it to real-world constraints and decisions. It consists of the following activities −

Identify Application Type

Identify application type whether it is a mobile application, a rich client, a rich internet application, a service, a web application, or some combination of these types.

Identify Deployment Constraints

Choose an appropriate deployment topology and resolve conflicts between the application and the target infrastructure.

Identify Important Architecture Design Styles

Identify important architecture design styles such as client/server, layered, message-bus, domain-driven design, etc. to improve partitioning and promotes design reuse by providing solutions to frequently recurring problems. Applications will often use a combination of styles.

Identify the Relevant Technologies

Identify the relevant technologies by considering the type of application we are developing, our preferred options for application deployment topology and architectural styles. The choice of technologies will also be directed by organization policies, infrastructure limitations, resource skills, and so on.

Key Issues or Key Hotspots

While designing an application, hot spots are the zones where mistakes are most often made. Identify key issues based on quality attributes and crosscutting concerns. Potential issues include the appearance of new technologies and critical business requirements.

Quality attributes are the overall features of your architecture that affect run-time behavior, system design, and user experience. Crosscutting concerns are the features of our design that may apply across all layers, components, and tiers.

These are also the areas in which high-impact design mistakes are most often made. Examples of crosscutting concerns are authentication and authorization, communication, configuration management, exception management and validation, etc.

Candidate Solutions

After defining the key hotspots, build the initial baseline architecture or first high level design and then start to fill in the details to generate candidate architecture.

Candidate architecture includes the application type, the deployment architecture, the architectural style, technology choices, quality attributes, and crosscutting concerns. If the candidate architecture is an improvement, it can become the baseline from which new candidate architectures can be created and tested.

Validate the candidate solution design against the key scenarios and requirements that have already defined, before iteratively following the cycle and improving the design.

We may use architectural spikes to discover the specific areas of the design or to validate new concepts. Architectural spikes are a design prototype, which determine the feasibility of a specific design path, reduce the risk, and quickly determine the viability of different approaches. Test architectural spikes against key scenarios and hotspots.

Architecture Review

Architecture review is the most important task in order to reduce the cost of mistakes and to find and fix architectural problems as early as possible. It is a well-established, cost-effective way of reducing project costs and the chances of project failure.

· Review the architecture frequently at major project milestones, and in response to other significant architectural changes.

· The main objective of an architecture review is to determine the feasibility of baseline and candidate architectures, which verify the architecture correctly.

· Links the functional requirements and the quality attributes with the proposed technical solution. It also helps to identify issues and recognize areas for improvement

Scenario-based evaluations are a dominant method for reviewing an architecture design which focuses on the scenarios that are most important from the business perspective, and which have the greatest impact on the architecture.Following are common review methodologies −

Software Architecture Analysis Method (SAAM)

It is originally designed for assessing modifiability, but later was extended for reviewing architecture with respect to quality attributes.

Architecture Tradeoff Analysis Method (ATAM)

It is a polished and improved version of SAAM, which reviews architectural decisions with respect to the quality attributes requirements, and how well they satisfy particular quality goals.

Active Design Review (ADR)

It is best suited for incomplete or in-progress architectures, which more focus on a set of issues or individual sections of the architecture at a time, rather than performing a general review.

Active Reviews of Intermediate Designs (ARID)

It combines the ADR aspect of reviewing in-progress architecture with a focus on a set of issues, and the ATAM and SAAM approach of scenario-based review focused on quality attributes.

Cost Benefit Analysis Method (CBAM)

It focuses on analyzing the costs, benefits, and schedule implications of architectural decisions.

Architecture Level Modifiability Analysis (ALMA)

It estimates the modifiability of architecture for business information systems (BIS).

Family Architecture Assessment Method (FAAM)

It estimates information system family architectures for interoperability and extensibility.

Communicating the Architecture Design

After completing the architecture design, we must communicate the design to the other stakeholders, which include development team, system administrators, operators, business owners, and other interested parties.

There are several following well-known methods for describing architecture to others: −

4 + 1 Model

This approach uses five views of the complete architecture. Among them, four views (the logical view, the process view, the physical view, and the development view) describe the architecture from different approaches. A fifth view shows the scenarios and use cases for the software. It allows stakeholders to see the features of the architecture that specifically interest them.

Architecture Description Language (ADL)

This approach is used to describe software architecture prior to the system implementation. It addresses the following concerns − behavior, protocol, and connector.

The main advantage of ADL is that we can analyze the architecture for completeness, consistency, ambiguity, and performance before formally beginning use of the design.

Agile Modeling

This approach follows the concept that “content is more important than representation.” It ensures that the models created are simple and easy to understand, sufficiently accurate, detailed, and consistent.

Agile model documents target specific customer(s) and fulfill the work efforts of that customer. The simplicity of the document ensures that there is active participation of stakeholders in the modeling of the artifact.

IEEE 1471

IEEE 1471 is the short name for a standard formally known as ANSI/IEEE 1471-2000, “Recommended Practice for Architecture Description of Software-Intensive Systems.” IEEE 1471 enhances the content of an architectural description, in particular, giving specific meaning to context, views, and viewpoints.

Unified Modeling Language (UML)

This approach represents three views of a system model. The functional requirements view (functional requirements of the system from the point of view of the user, including use cases); the static structural view (objects, attributes, relationships, and operations including class diagrams); and the dynamic behavior view (collaboration among objects and changes to the internal state of objects, including sequence, activity, and state diagrams).

